

Unexpected Finds Protocol

Cranbrook School Victoria Road, Bellevue Hill

> Prepared for Cranbrook School

Project 84944.02 March 2019

Douglas Partners Geotechnics | Environment | Groundwater

×

Document History

Document details

Project No.	84944.02	Document No.	R.006.Rev0								
Document title	Unexpected Finds Pro	Unexpected Finds Protocol									
	Cranbrook School										
Site address	Victoria Road, Bellevu	e Hill									
Report prepared for	Report prepared for Cranbrook School										
File name	84944.02.R.006.Rev0.C										

Document status and review

Revision	Prepared by	Reviewed by	Date issued	
DftA	L James-Hall	P Gorman	2 May 2018	
DftB	L James-Hall	P Oitmaa	2 October 2018	
0	L James-Hall	P Oitmaa	6 March 2019	

Distribution of copies

Revision	Electronic	Paper	Issued to
DftA	1	0	Cranbrook School
DftB	1	0	Cranbrook School
0	1	0	Cranbrook School

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

	Signature	Date
Author	PUOL LOTA	6 March 2019
Reviewer	PLICH	6 March 2019
	1000000	

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666 Fax (02) 9809 4095

Table of Contents

Page

1.	Introd	luction	1
2.	Previo	ous Reports	1
3.	Gene	ral Unexpected Finds Protocol	1
4.	Class	ification of Soils	2
	4.1	General	2
	4.2	Fill Soils	3
	4.3	Natural Soils and Rock	3
5.	Dispo	sal and Containment	4
	5.1	On-site Containment	4
	5.2	Off-site Disposal	4
6.	Loadi	ng and Transport of Contaminated Materials	5
7.	Waste	e Exceeding the Disposal Threshold	5
8.	Unex	pected Asbestos Finds Protocol	6
9.	Grour	ndwater Monitoring Contingency Plan	7
10.	Conti	ngency Plan to Respond to Site Incidents	9
11.	Limita	ations10	0

List of Appendices

Appendix A: About this Report

Unexpected Finds Protocol Cranbrook School Victoria Road, Bellevue Hill

1. Introduction

This Unexpected Finds Protocol (UFP) has been prepared by Douglas Partners Pty Ltd (DP) for a proposed development at Cranbrook School, Victoria Road, Bellevue Hill. The work was commissioned by Cranbrook School.

It is understood that the proposed development includes the construction of an underground sporting facility (swimming pool, sports courts) and basement parking area beneath the oval in the northern portion of the site. This will involve a deep excavation followed by the replacement of the oval on a suspended structure. A separate performing arts and indoor sporting facility (the 'Centenary Building') is also proposed to the south-east of the oval which will involve the demolition of several existing buildings followed by a deep excavation into the embankment.

2. **Previous Reports**

The previous investigations and reports undertaken by DP on the site are listed below. These have been drawn upon in developing this UFP.

- 84944.00 Geotechnical Investigation, 2015
- 84944.01.R.001 Geotechnical Investigation, 2017
- 84944.01.R.002 Waste Classification, 2017
- 84944.02.R.001 Geotechnical Investigation, October 2018
- 84944.02.R.004 Preliminary Site Investigation (Contamination), March 2018

3. General Unexpected Finds Protocol

The UFP has been established to deal with unexpected findings and/or unplanned situations that may arise during civil and construction works associated with the proposed development. This protocol is applicable to unexpected finds relating to potentially contaminated soils that may be encountered during excavation works.

The UFP is not a detailed action or management plan to deal with all unexpected finds. If unexpected finds do occur, then additional information and advice will be required from the Environmental Consultant or Occupational Hygienist, as applicable.

The protocol for unexpected finds relating to contamination is as follows:

- 1. The contractor(s) undertaking any remediation, civil or construction works will be provided with a copy of this UFP. The contractor(s) will nominate their Site (Project) Manager who will be responsible for implementing the UFP;
- 2. Upon discovery of suspected contaminated material, the Site (Project) Manager is to be notified and the affected area closed off by the use of barrier tape and warning signs (if appropriate) and sediment controls. Warning signs shall be specific to the findings and potential hazards and shall comply with the Australian Standard 1319-1994 – Safety Signs for the Occupational Environment;
- 3. The agreed qualified Environmental Consultant and Principal are to be notified as soon as possible by the Site Manager to inspect the area and confirm the presence or otherwise of hazards or contamination, and to determine the method and extent of investigation or remediation works to be undertaken.
- 4. A report detailing this information will be compiled by the Environmental Consultant and provided to the Site Manager, who will disseminate to the Principal (or their representative);
- 5. All work associated with the contaminated soil will be undertaken by an appropriately licensed contractor, as stipulated by the Environmental Consultant and agreed with the Principal;
- 6. All works must comply with the provisions of the relevant legislation and guidelines;
- 7. Documentary evidence (weighbridge dockets) of appropriate disposal of the material is to be provided to the Principal (or their representative) if disposal occurs;
- 8. Details of all relevant activities are to be recorded in the site record system;
- Details of the remediation and validation works undertaken with respect to the unexpected find must be incorporated into the final Validation Assessment Report prepared by a suitably qualified Environmental Consultant;
- 10. The preferred strategy is to keep contaminated soil on site in designated areas where possible. Materials must not be removed from the site without agreement by the Principal.

4. Classification of Soils

4.1 General

The proposed development will involve the excavation and disposal of surplus soils off site. Detailed geotechnical and contamination testing has previously been undertaken as outlined in Section 2 of this UFP. However, there may also be unexpected finds during the course of the works that will also require encapsulation on site or, with Principal approval, disposal off-site. Any materials excavated from the site and approved for off-site disposal must be classified prior to disposal in accordance with the relevant guidelines and legislation.

Based on the nature of the materials likely to be generated by the proposed site works, the following legislation and guidelines are considered to be applicable to the classification of the various waste streams that may require disposal off site:

- 1. Protection of the Environment Operations (POEO) Act 1997;
- 2. NSW EPA Waste Classification Guidelines Part 1: Classifying Waste, 2014;
- 3. NSW DECCW Protection of the Environment Operations (Waste) Regulation 2005, General Exemption Under Part 6, Clause 51 and 51A, The Excavated Natural Material Exemption (ENM), 2008; and
- 4. NSW DECCW Protection of the Environment Operations (Waste) Regulation 2005, General Exemption Under Part 6, Clause 51 and 51A, The Recovered Aggregate Exemption, 2008.

4.2 Fill Soils

Unless advised otherwise by the Environmental Consultant, filling soils will be sampled and analysed at a rate of 1 sample per 100-250 m³ to determine the concentrations of the target contaminant parameters in the excavated materials. Recovered samples will generally be analysed for the following:

- heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, zinc) (every sample);
- PAH (every sample);
- TRH/ BTEX (every sample);
- Phenols (every third sample);
- OCP (every third sample);
- PCB (every third sample);
- Asbestos (every sample).

Analysis of specific samples for any identified additional contaminants of concern will be carried out based on visual and olfactory observations, PID results and proximity to potential sources of contamination as follows;

- For classification purposes selected samples may be subject to toxicity characteristic leaching
 procedure (TCLP) analysis based on total concentration results, including samples with reported
 levels of various contaminants elevated above the screening (CT) criteria and targeting the most
 elevated results;
- If the materials are tested to determine if the material meets the requirements of a general resource recovery order (such as ENM, recovered fines or recovered aggregate) then additional testing may be required as specified by the general exemption;
- A classification in accordance with EPA (2014) will be assigned by the Environmental Consultant.

4.3 Natural Soils and Rock

• In situ or stockpiles of excavated natural sands, clays and rock will be visually examined for indicators of potential contamination (such as staining or odours) and the presence of non-natural materials such as filling or foreign inclusions; and

 Should the *in situ* or stockpiled materials be considered free from contamination indicators, nonnatural materials and foreign inclusions, a minimum of one sample will be recovered for a general screen of analytes. Depending upon the results, a VENM classification will be assigned by the Environmental Consultant.

5. Disposal and Containment

Following completion of the waste classification process, and the issuing of waste classification reports by the Environmental Consultant, the surplus classified materials will either be encapsulated on the site where possible, or disposed of off-site. The preference is for encapsulation on site.

5.1 On-site Containment

Should materials that have undergone testing for waste classification be proposed for retention on site, the materials will be consolidated and isolated in accordance with NSW EPA approved guidelines as follows:

- Spoil stockpiles classifying as VENM can be buried on site as part of landscaping works or general civil works, subject to geotechnical suitability;
- Materials meeting one of the general resource recovery orders (RROs) can be re-used on site as part of landscaping works or general civil works, subject to geotechnical suitability;
- Spoil stockpiles classifying as General Solid Waste or Restricted Solid Waste will be assessed on site by the Environmental Consultant/Occupational Hygienist and a methodology for their consolidation and compaction and capping/containment of the waste will be determined; and
- Spoil stockpiles classifying as Hazardous Waste may not be able to be buried on site. Further recommendations are to be given on a case-by-case basis by a suitably qualified Environmental Consultant.

5.2 Off-site Disposal

Classified materials to be removed from the site will need to be disposed of in accordance with NSW EPA approved guidelines as follows:

- Spoil stockpiles classifying as VENM will be taken to another development site for use as general filling, following acceptance of the materials by the recipient. Alternatively, VENM will be taken to a licensed landfill or other licensed facility;
- Materials meeting one of the general resource recovery orders (RROs) will be either transported to another development site for land application in accordance with the order, or taken to a licensed landfill or other licensed facility;
- Spoil stockpiles classifying as General Solid Waste or Restricted Solid Waste will be taken to a landfill facility licensed to accept such waste streams; and

 Spoil stockpiles classifying as Hazardous Waste will remain segregated in stockpiles pending treatment/alternate disposal arrangements. Such stockpiled materials will be covered by anchored geotextile to prevent erosion and wind blow of contaminated materials. Materials considered to have the potential to produce contaminated leachate will be stockpiled in an area with an appropriate leachate collection system.

In general, all materials removed from the site shall be disposed of at a location legally allowed to receive them in accordance with the POEO Act. Copies of all necessary approvals from the landfill shall be given to the Site Manager prior to any contaminated material being removed from the site.

Copies of all consignment notes for the transport, receipt and disposal of all materials (including VENM) will also be maintained as part of the site log and made available to the Environmental Consultant for inspection and reporting purposes upon request. This information will include the source of the materials and the disposal location and tonnages (weighbridge dockets).

Relevant waste classification results shall be made available to the receiving site/waste facility to enable selection of a suitable disposal location.

6. Loading and Transport of Contaminated Materials

Transport of all materials to and from the site shall be via clearly delineated, pre-defined haulage routes.

Removal of waste materials from the site shall only be carried out by a licensed contractor holding an appropriate licence, consent or approval as required by the POEO Act 1997 and with the appropriate approvals obtained from the NSW EPA, if required.

Details of all contaminated and spoil materials removed from the site (including VENM) shall be documented by the contractor with copies of weighbridge slips, trip tickets and consignment disposal confirmation (where appropriate) provided to the Environmental Consultant and the Principal's Representative / Site Manager. A site log shall be maintained to track disposed loads against on-site origin, location of the materials and sample numbers.

The proposed waste transport route will be notified to the local Council, where necessary, and truck dispatch shall be logged and recorded by the Contractor for each load leaving the site.

7. Waste Exceeding the Disposal Threshold

If spoil is assessed to have exceeded the threshold criteria for disposal as Restricted Solid Waste (as defined in EPA 2014) and cannot be directly disposed of off-site, these materials will be held on site pending the determination of alternative disposal arrangements.

The contingency plan to manage contaminated spoil materials that fail to meet the off-site disposal criteria is therefore as follows:

- 1. Excavated material which cannot be disposed of in a landfill directly i.e. those which are awaiting TCLP results or which fail the combined specific concentration and TCLP test, or require storage pending treatment, will be placed in separate demarcated stockpiles.
- 2. Disposal arrangements will be determined based on sampling results as follows:
 - Material which meets the disposal levels of EPA (2014) shall be collected and disposed directly to a landfill, pending Principal approval;
 - Material which exceeds the disposal guideline levels shall be tested for TCLP. If the TCLP and total concentration are within the disposal requirements of General Solid Waste or Restricted Solid Waste, the materials will be dispatched off-site, pending Principal approval. Materials which fail the criteria will be segregated into separate stockpiles for alternate disposal arrangements; and
 - Those materials which exceed the leachability criteria for landfill disposal, shall be stockpiled separately on an impermeable surface, be bunded to prevent leachate generation, and be subject to further treatment as directed by the Environmental Consultant.
- 3. Consent as to the appropriateness of the treatment and disposal method for materials exceeding the leaching guidelines may need to be obtained from the NSW EPA, and if required a disposal consent must be sought from the Authority prior to the removal of such wastes from the site.

8. Unexpected Asbestos Finds Protocol

It is possible that asbestos-based materials may be uncovered. In the event that this occurs the following 'Unexpected Asbestos Finds Protocol' has been established:

- Upon discovery of suspected asbestos containing material, the Site Manager is to be notified and the affected area closed off by the use of barrier tape and warning signs. Warning signs shall be specific to asbestos hazards and shall comply with the Australian Standard 1319-1994 – Safety Signs for the Occupational Environment;
- An Occupational Hygienist is to be notified to inspect the area and confirm the presence of asbestos (and type of asbestos) and determine the extent of remediation works to be undertaken. A report detailing this information will be compiled by the Occupational Hygienist and provided to the Site Manager;
- 3. SafeWork NSW is required to be notified in the event that more than 10 m² of bonded asbestos is encountered, or if any friable asbestos is encountered, and further works in relation to the asbestos will generally not be permitted until a permit has been issued by SafeWork NSW which may take up to 5 days;
- 4. If deemed an appropriate strategy by the Occupational Hygienist and Principal, the impacted soil will be stockpiled for waste classification purposes (including sampling and chemical analysis). In dry and windy conditions the stockpile will be lightly wetted and covered with plastic sheeting whilst awaiting disposal;

- 5. All work associated with asbestos in soil will be undertaken by a Contractor holding a class AS1 Licence (if only bonded asbestos is found) and all workers working in the asbestos impacted zone must meet the following minimum PPE requirement (unless otherwise advised by the Occupational Hygienist):
 - Steel-capped lace-less boots;
 - Hard hat meeting AS1801-1981 and AS/NZS 1801:1997/Amdt 1:1999 requirements;
 - High visibility clothing;
 - Half-face P2 rated respirator or similar;
 - Disposable full length body coveralls with elasticated hood and cuffs (Tyvek suit or equivalent); and
 - Gloves.
- 6. If deemed necessary by the Occupational Hygienist (e.g. asbestos fibres are detected and/or there are nearby sensitive receptors) monitoring for airborne asbestos fibres is to be carried out during the soil excavation. Asbestos air monitoring will be undertaken in accordance with *Guidance Note on the Membrane Filter Method for Estimating Airborne Asbestos Fibres 2nd Edition* [NOHSC: 3003 (2005)] and sampling density and locations will be determined by the Occupational Hygienist. All filters will be submitted to a NATA accredited laboratory for analysis. Air samples will be collected from the breathing zone of a person, over a minimum of four hours duration;
- 7. The stockpile(s) will be disposed of or contained in accordance with Sections 5.1, 5.2 and 7 of this UFP.
- 8. Documentary evidence (weighbridge dockets) of correct disposal is to be provided to the Site Manager;
- 9. At the completion of the excavation, a clearance inspection is to be carried out and written certification is to be provided by the Occupational Hygienist that the area is safe to be accessed. Clearance will include soil samples and asbestos analysis. If required, the filling material remaining in the inspected area can be covered/sealed by an appropriate physical barrier layer of non-asbestos containing material prior to sign-off;
- 10. Details of the incident are to be recorded in the site record system;
- 11. The area may be re-opened for further excavation or construction work.

9. Groundwater Monitoring Contingency Plan

In the event that future investigations, remediation and/or civil works identify a significant potential risk of groundwater contamination, and/or if an underground storage tank (UST) is discovered at the site, a groundwater assessment may be required. The groundwater assessment (if required) would comprise the following:

1. The installation of an appropriate number of groundwater monitoring wells (to be determined by the Environmental Consultant) to allow collection of groundwater samples;

- 3. Field parameters will be measured using a calibrated multi-parameter instrument, with probes placed inside a flow-through cell. The field parameters measured will include temperature, dissolved oxygen, conductivity, specific conductance, total dissolved solids, pH and oxidation reduction potential;
- Samples will be collected in laboratory prepared bottles and vials. Groundwater samples collected for heavy metals testing will be filtered in the field through a 45 µm membrane filter into nitric acid preserved bottles; and
- 5. Decontaminating all re-usable sampling equipment prior to collecting each sample using a 3% solution of phosphate free detergent (Decon 90) and distilled water.

Handling and transport of the groundwater samples must be carried out as set out below:

- Sample containers (supplied by the laboratory) must be labelled with individual and unique identification, including project number and sample number;
- Samples must be placed in insulated coolers and maintained at a temperature of approximately 4°C until transported to the analytical laboratory; and
- Chain-of-custody documentation must be maintained at all times and countersigned by the receiving laboratory on transfer of samples.

The groundwater analysis will generally include the following:

• Heavy metals, TRH, BTEX, PAH and VOC;

Douglas Partners

- Intra-laboratory duplicates for heavy metals, TRH, BTEX, PAH and VOC;
- Trip spikes for BTEX;
- Trip blanks for BTEX and TRH; and
- Equipment rinsate samples for BTEX, PAH, lead, VOC and TRH.

Note: The above analytical suite may be subject to change subject to the identification of other potential contaminants (i.e. pesticides).

Results of the groundwater analysis will be incorporated into a groundwater monitoring validation report.

In the event that no groundwater contamination risks are identified, no groundwater monitoring programme will be considered necessary.

It is noted that dewatering will be the responsibility of the Contractor and is to be undertaken to NSW EPA standards.

10. Contingency Plan to Respond to Site Incidents

The key to effective management of incidents is the timely action taken before any situation reaches a reportable or critical level. Therefore, surveillance activities are extremely important, and should be conducted for the measures prescribed herein and any other measures prescribed in any additional Environmental Management Plan developed subsequently. During construction activities on the site, the following inspection or preventative actions should be performed by the main Contractor:

- Regular inspection of works by the Site Manager;
- Completion of routine environmental checklists and follow-up of non-compliance situations;
- Maintenance of controls on-site;
- An induction process for site personnel involved in the remediation works that includes relevant information on environmental requirements, and ensures that all site personnel are familiar with the site emergency procedures.

The Site Manager should be responsible for initiating an immediate emergency response using the resources available on the site. Where external assistance is required, the relevant emergency services should be contacted. A table such as that below (Table 1), containing contact details for key personnel who may be involved in an environmental emergency response should be completed and be readily available to personnel at all times. The table should be completed, and thereafter amended as required.

Name	Contact Details
Emergency Services: Fire Brigade, Ambulance and Police	Tel: 000
Nearest Doctor's Surgery	ТВА
Nearest Medical Centre	ТВА
Nearest Hospital	ТВА
NSW EPA	Pollution Line Tel: 131 555
Local Government Authority – Woollahra Municipal Council	9391 7000
Water Authority	Emergency Line: 13 20 90
Energy Australia	Emergency Line: 131 388
AGL	Emergency Line: 131 909
Waste Disposal and spill clean-up services	ТВА
Neighbours	ТВА

Table 1: Example Table for Site Contacts for Environmental Emergencies

Note: This table or similar should be <u>completed by the Contractor prior to commencement of works</u> and, subsequently, regularly updated.

11. Limitations

Douglas Partners Pty Ltd (DP) has prepared this UFP for a redevelopment project at Cranbrook School, Bellevue Hill in accordance with instructions received from Cranbrook School. The report is provided for the use of Cranbrook School for this project only and for the purpose(s) described in the report. It should not be used for other projects or by a third party.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Douglas Partners Pty Ltd

Appendix A

About this Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

APPENDIX I – UNEXPECTED FINDS PROTOCOL FOR ABORIGINAL & NON-ABORIGINAL HERITAGE

APPENDIX J - WASTE CLASSIFICATION AND VALIDATION

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666 Fax (02) 9809 4095

84944.02.R.010.Rev0 30 October 2019 PMO

Cranbrook School c/- epm Projects Level 2, 146 Arthur Street NORTH SYDNEY NSW 2060

Attention: Mr Todd Ewart

Dear Sirs

In Situ Waste Classification & ENM Assessment Hordern Oval Cranbrook School, Bellevue Hill

1. Executive Summary

This report describes the methodology and results of an In Situ Waste Classification and Excavated Natural Material (ENM) Assessment undertaken by Douglas Partners Pty Ltd (DP) on Hordern Oval, Cranbrook School, Bellevue Hill. The intention of the assessment was to cover the materials that are to be removed during excavation works for proposed Aquatic and Fitness Centre (AFC). The results are summarised in Tables 1 and 2 which refer to the attached Drawing C1.

In Situ Location	Fill materials that are above natural soil/rock in the yellow shaded areas on Drawing C1
Material Description	Silty sand fill and sand fill as described on the attached borehole logs for

Table 1: Summary of Waste Classification Assessment for Yellow Shaded Areas on Drawing C1

Classification	General Solid Waste (non-putrescible) based on CT1 criteria
References	NSW EPA Waste Classification Guidelines (2014)

BH2 and BH113

Table 2: Summary of Waste Classification Assessment for Non-Shaded Are	a on Drawing C1
--	-----------------

In Situ Location	Fill materials that are above natural soil/rock in all areas within the excavation footprint except for the yellow shaded areas on Drawing C1
Material Description	Silty sand and silty clay topsoil, and sand fill (including cemented sand/coffee rock) as described on the attached borehole logs
Classification	General Solid Waste (non-putrescible) based on CT1 criteria and Excavated Natural Material (ENM)
References	NSW EPA Waste Classification Guidelines (2014) The excavated natural material order/exemption 2014

Integrated Practical Solutions

Brisbane • Cairns • Canberra • Central Coast • Coffs Harbour • Darwin • Geelong • Gold Coast • Macarthur • Melbourne Newcastle • North West Sydney • Perth • Port Macquarie • Sunshine Coast • Sydney • Townsville • Wollongong

Reference should be made to the following sections of the report for information on the materials and their location which are subject to this assessment, the sampling and testing methodology, guidelines used, analytical results, and the conditions and limitations associated with this assessment.

2. Introduction

This In Situ Waste Classification & ENM Assessment was commissioned by Cranbrook School to provide information in relation to disposal options for materials that will be removed from Hordern Oval. These materials are likely to include bulk excavation spoil, pile spoil and spoil from ancillary works. The attached Drawing C1 shows the location of the assessment area.

The assessment was undertaken in accordance with the requirements of *The excavated natural material order 2014* issued by the NSW EPA under Part 9, Clause 93 of the *Protection of the Environment Operations (Waste) Regulation 2014.* Where the ENM requirements were not met, the materials were classified in accordance with *Waste Classification Guidelines* (NSW EPA, 2014).

3. Scope of Works

The scope of works for the waste classification was as follows:

- Review the results of previous contamination testing undertaken on the site by Douglas Partners in 2015 and in 2017;
- Undertake additional sampling from 16 test pits excavated by the project archaeologist in October 2019 to gain further information on the contaminant concentrations on the site;
- Collect discrete soil samples from various depths within the boreholes/test pits in general accordance with the ENM Order;
- Dispatch the soil samples to a NATA accredited laboratory (Envirolab Services Pty Ltd) for quantitative analysis for the suite of contaminants outlined in the ENM Order;
- Preparation of this In Situ Waste Classification & ENM Assessment report.

4. Site Information and Potential for Contamination

Cranbrook School opened in 1918 and presumably the oval has been in use since this time. The southern portion of the oval is below a batter slope and the northern portion is supported by a retaining wall. As such, it appears likely that material was excavated from a natural hill in the south and deposited in the lower area to the north to create a large level playing area. To our knowledge, no obviously contaminating activities have been undertaken in this area of the site.

The suite of contaminants required to be assessed under the *ENM Order* is as follows:

- Eight priority metals: arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc;
- Total petroleum hydrocarbons (TPH);
- Benzene, toluene, ethylbenzene and xylenes (BTEX);
- Polycyclic aromatic hydrocarbons (PAH);
- pH;
- Electrical conductivity; and
- Foreign materials.

In addition to these analytes, the following suite was also assessed in accordance with the *Waste Classification Guidelines*:

- Organochlorine pesticides (OCP);
- Organophosphorus pesticides (OPP);
- Polychlorinated biphenyls (PCB);
- Phenol; and
- Asbestos.

5. Field Work Rationale and Methodology

The area of the assessment is shown on Drawing C1 which is attached to this report. The area has been assessed to be approximately 15,000 m² and therefore 25 sampling locations are required on the basis of the *ENM Order* and *Sampling Design Guidelines* (NSW EPA, 1995). Samples were obtained from 30 locations which exceeds the minimum number required.

The environmental sampling for the current assessment was performed by Douglas Partners on 23 October 2019, with reference to standard operating procedures outlined in the DP *Field Procedures Manual*. All sampling data was recorded on DP chain-of-custody sheets. The general sampling procedure comprised:

- Collection of representative soil samples from within the boreholes/test pits in general accordance with the requirements of the ENM Order;
- The use of decontaminated equipment for each sampling event;
- Transfer of samples into laboratory-prepared glass jars, capping immediately, minimising the headspace within the sample jar;
- Collection of replicate soil samples in zip-lock bags for asbestos screening purposes;
- Labelling of sample containers with individual and unique identification, including project number, sample location and sample depth;

- Placing the glass jars into a cooled, insulated and sealed container for transport to the laboratories; and
- Use of chain of custody documentation ensuring that sample tracking and custody could be cross-checked at any point in the transfer of samples from the field to the laboratory. Copies of completed chain of custody forms are attached.

6. Field Work and Laboratory Test Results

The materials encountered during the various stages of the field work are described in the borehole and test pit logs attached to this report. A summary of the laboratory test results is provided in Tables 3 and 4, also attached, along with the detailed laboratory result reports. The foreign materials results were all below the laboratory detection limits.

7. Waste Classification Assessment

The *Waste Classification Guidelines* include the following six-step process for waste classification:

- Establish if the waste is 'special waste'
- Establish if the waste is 'liquid waste'
- Establish if the waste is 'pre-classified' by the EPA
- Establish if the waste possesses hazardous characteristics
- Determine the contaminant concentrations of the waste
- Establish if the waste is putrescible

Visual inspection and the laboratory analysis indicated that asbestos was not present in the soil samples tested. The soil samples did not contain clinical waste or tyres and therefore the soils on the site are not classified as special waste.

The samples analysed were not in liquid form and therefore could not be described as liquid waste.

The EPA has pre-classified glass, plastic, rubber, bricks, concrete, building and demolition waste, and asphalt waste as General Solid Waste (non-putrescible). The materials within the samples were typically soil and therefore not pre-classified.

The samples analysed did not possess any obvious hazardous characteristics and could not be described as hazardous waste prior to chemical analysis. All samples analysed were assessed on a visual and tactile basis as being incapable of significant biological transformation and are therefore considered to be non-putrescible.

Due to the number of samples used for this assessment, the sample mean, sample standard deviation and 95% UCL concentrations were used to compare the contaminant concentrations with the contaminant threshold (CT) criteria provided in the guidelines. All sample mean, sample standard deviation and 95% UCL concentrations were within the CT1 criteria.

On this basis, all samples of fill would be classified as General Solid Waste (non-putrescible) and would need to be disposed of at a site that is licenced to receive this category of waste. Any materials encountered on the site that are different to those described herein may have a different classification.

The natural soils and, where encountered, rock below the fill should be able to be described as virgin excavated natural material (VENM) upon excavation, providing they are not cross-contaminated during excavation/piling works. Validation of this status will be required once the overburden has been removed from the site. VENM can usually be transported to a site for use as fill rather than requiring disposal at landfill.

8. ENM Assessment

The excavated natural material order 2014 defines ENM as naturally occurring rock and soil that has:

- been excavated from the ground; and
- contains at least 98% (by weight) natural material; and
- does not meet the definition of Virgin Excavated Natural Material.

Further, ENM does not include material located in a hotspot, material that has been processed, or material that contains asbestos, acid sulphate soils (actual and potential) or sulfidic ores. The *ENM Order* also describes sampling frequency, contaminants to be analysed and test methods to be used.

The testing described in this report was carried out in general accordance with the requirements for in situ assessment as outlined in the ENM Order. The laboratory test results, sample receipt and chainof-custody documentation are attached to this report. A summary of the results of the testing, as well as the ENM criteria for the various analytes, are provided in Tables 3 to 5 which are attached to this report.

All sample analysis was conducted by Envirolab Services Pty Ltd in accordance with the chain-ofcustody prepared by DP. Based on a review of the laboratory reported QC results, it is considered that the laboratory test data obtained are reliable and useable for this assessment.

As shown in Tables 3 to 5, the majority of the samples analysed met the requirements of the *ENM Order*. Only the samples from previous boreholes BH2 and BH113 did not due to slightly elevated concentrations of Arsenic or Benzo(a)pyrene. These areas have been delineated in yellow shading in the attached Drawing C1.

Based on the observations at the time of sampling and the reported analytical results, the materials outside the areas of yellow shading can be described as *Excavated Natural Material* (ENM) upon excavation and can be disposed of at a site that is licenced to receive this type of material.

9. Additional Comments

Division 4, Section 45, of *The Protection of the Environment Operations (Waste) Regulation 2014* states that it is an offence for waste to be transported to a place that cannot lawfully be used as a facility to accept that waste. It is the duty of the owner and transporter of the waste to ensure that the waste is disposed of appropriately. DP does not accept liability for the unlawful disposal of waste materials from any site. DP accepts no responsibility for the material tracking, loading, management, transport or disposal of waste from the site. Before disposal of the material to a licensed landfill is undertaken, the waste producer will be required to obtain prior consent from the landfill.

The requirements of the ENM Order and ENM Exemption must be followed if any material is disposed of as ENM, and these documents are attached to this report for information.

Both the receiving site and the site disposing of the material should satisfy the requirements of the licence before disposal of the material is undertaken. Note that appropriate prior arrangement with the receiving site/relevant authorities should be obtained prior to the disposal of any material off site. The receiving site should check to ensure that the material received matches the description provided in this report and contains no cross contamination.

The results provided in the report are indicative of the sub-surface conditions only at the specific sampling locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change as a result of human influences, and such changes may occur after DP's field testing has been completed. Furthermore, fill is by its nature heterogeneous and therefore some parts of the fill may not be represented by the visual and analytical results reported herein.

10. Limitations

Douglas Partners (DP) has prepared this report for this project at Cranbrook School, Bellevue Hill, in accordance with instructions from Cranbrook School. This report is provided for the use of Cranbrook School for this project only and for the purposes as described in the report. It should not be used for other projects or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Please contact the writer for clarification of the above as necessary.

Yours faithfully Douglas Partners Pty Ltd

Peter Oitmaa Principal

Reviewed by

рр

J M Nash Principal

Attachments: Drawing C1 Summary of Laboratory Test Results Current and Previous Borehole/Test Pit Logs NATA Laboratory Certificates, Chain-of-Custody Documentation & Sample Receipt Advice ENM Order and ENM Exemption Notes About this Report

Drawing C1

Locality Plan

LEGEND

- Previous borehole 2015
- Previous CPT 2015
- A Previous borehole & CPT 2015
- A Previous borehole & CPT 2017
- + Previous CPT 2017
- Previous borehole 2017
- W Groundwater well
- Current test pit location

Area of GSW (not ENM)

PROJECT No: 84944.02

DRAWING No: REVISION: C1

0

Summary of Laboratory Test Results

Table 3: Contaminant Concentrations in Filling

				-																		
Sample/	В	Т	Е	X	TRH ₆₋₉	TRH ₁₀₋₃₆	+PAH	B(a)P	+OCP	+PCB	Phenol	Asbestos	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	рН	EC
Depth (m)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	(Y/N)	mg/kg	units	dS/m							
Filling (2015)																						
BH2/1.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	41	<0.4	3	5	3	<0.1	<1	36	6.3	0.021
BH2/2.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	Ν	<4	<0.4	2	1	3	<0.1	<1	3	6.5	0.013
BH2/3.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	1	<1	1	<0.1	<1	1	6.5	0.013
BH2/4.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	2	<1	1	<0.1	<1	<1	5.8	0.014
BH4/1.0	<0.2	<0.5	<1	<3	<25	<250	5.8	0.3	NIL	NIL	<5	N	<4	<0.4	2	2	5	<0.1	<1	3	6.3	0.014
BH4/2.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	1	1	9	<0.1	<1	3	6.1	0.012
BH4/3.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	1	<1	4	<0.1	<1	2	6.0	0.011
BH4/4.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	2	1	14	<0.1	<1	4	6.2	0.014
Filling (2017)		-		-		-		-					-			-		-				
BH101/0.5	<0.2	<0.5	<1	<3	<25	<250	3.0	0.3	NIL	NIL	<5	N	6	<0.4	2	18	22	<0.1	1	12	6.4	0.022
BH102/0.5	<0.2	<0.5	<1	<3	<25	<250	1.2	0.2	NIL	NIL	<5	N	11	<0.4	7	18	28	0.3	3	24	6.2	0.027
BH103/0.1	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	Ν	<4	<0.4	42	15	14	<0.1	21	24	5.3	0.200
BH111/0.45-0.5	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	<1	<1	1	<0.1	<1	1	6.3	0.012
BH113/1.0-1.05	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	41	<0.4	1	2	2	<0.1	<1	4	6.1	0.012
BH115/0.1	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	14	<0.4	5	5	6	<0.1	3	16	6.1	0.032
BH117/1.95-2.0	<0.2	<0.5	<1	<3	<25	<250	0.2	<0.05	NIL	NIL	<5	N	<4	<0.4	1	3	7	<0.1	<1	6	6.1	0.014
BH118/0.1-0.15	<0.2	<0.5	<1	<3	<25	<250	0.78	0.06	NIL	NIL	<5	N	5	<0.4	4	5	11	0.2	2	9	5.8	0.027
BH124/0.1	<0.2	<0.5	<1	<3	<25	<250	0.59	0.1	NIL	NIL	<5	N	5	<0.4	4	5	12	0.2	2	13	6.2	0.028
BH126/2.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	<1	1	2	<0.1	<1	3	6.4	0.008
BH128/1.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	1	2	1	<0.1	<1	5	6.2	0.011
BH130/0.1	<0.2	<0.5	<1	<3	<25	<250	2.3	0.2	NIL	NIL	<5	Ν	19	0.5	9	19	50	<0.1	4	42	5.7	0.025
Filling (2019)																						
TP1/0-0.3	<0.2	<0.5	<1	<3	<25	<250	0.05	0.05	NIL	NIL	<5	NT	9	<0.4	2	4	5	<0.1	1	9	5.9	0.032
TP2/0.4-0.5	<0.2	<0.5	<1	<3	<25	<250	<0.05	<0.05	NT	NT	NT	N	7	<0.4	2	3	4	<0.1	1	7	6.5	0.022
TP3/0.4-0.5	<0.2	<0.5	<1	<3	<25	<250	1.0	0.1	NIL	NIL	<5	NT	<4	<0.4	3	2	6	<0.1	2	5	6.0	0.014
TP4/0.4-0.5	<0.2	<0.5	<1	<3	<25	<250	<0.05	<0.05	NIL	NIL	<5	N	<4	<0.4	2	3	6	<0.1	<1	7	6.4	0.016
TP8/1.6-1.8	<0.2	<0.5	<1	<3	<25	<250	<0.05	<0.05	NT	NT	NT	N	6	<0.4	1	<1	1	<0.1	<1	2	6.3	0.009
TP8/4.6-4.8	<0.2	<0.5	<1	<3	<25	<250	<0.05	<0.05	NT	NT	NT	NT	<4	<0.4	1	<1	1	<0.1	<1	3	5.9	0.011
TP9/0-0.3	<0.2	<0.5	<1	<3	<25	<250	0.92	0.2	NIL	NIL	<5	N	<4	<0.4	4	6	10	<0.1	2	13	6.2	0.016

Table 3: Contaminant Concentrations in Filling (Continued)

Sample/	В	Т	Е	X	TRH ₆₋₉	TRH ₁₀₋₃₆	+PAH	B(a)P	+OCP	+PCB	Phenol	Asbestos	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	рН	EC
Depth (m)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	(Y/N)	mg/kg	units	dS/m							
TP10/0-0.3	<0.2	<0.5	<1	<3	<25	<250	<0.05	<0.05	NIL	NIL	<5	NT	6	<0.4	4	5	10	0.1	2	14	6.6	0.016
TP11/0-0.3	<0.2	<0.5	<1	<3	<25	<250	1.8	0.2	NIL	NIL	<5	NT	8	<0.4	4	9	20	0.1	2	12	5.9	0.023
TP11/0.8-1.0	<0.2	<0.5	<1	<3	<25	<250	<0.05	<0.05	NT	NT	NT	N	<4	<0.4	1	2	<1	<0.1	<1	14	5.6	0.008
TP12/1.6-1.8	<0.2	<0.5	<1	<3	<25	<250	<0.05	<0.05	NT	NT	NT	NT	8	<0.4	<1	<1	1	<0.1	<1	2	6.1	0.010
TP12/3.6-3.8	<0.2	<0.5	<1	<3	<25	<250	<0.05	<0.05	NT	NT	NT	NT	<4	<0.4	2	<1	1	<0.1	<1	<1	5.8	0.012
TP13/0-0.3	<0.2	<0.5	<1	<3	<25	<250	1.4	0.2	NIL	NIL	<5	N	7	<0.4	3	7	17	0.1	2	13	5.9	0.020
TP13/2.8-3.0	<0.2	<0.5	<1	<3	<25	<250	<0.05	<0.05	NT	NT	NT	NT	<4	<0.4	<1	<1	<1	<0.1	<1	<1	5.5	0.012
TP14/0.4-0.5	<0.2	<0.5	<1	<3	<25	<250	<0.05	<0.05	NIL	NIL	<5	NT	6	<0.4	2	4	6	<0.1	<1	4	6.1	0.012
TP15/0.4-0.6	<0.2	<0.5	<1	<3	<25	<250	0.05	0.05	NIL	NIL	<5	N	<4	<0.4	2	4	8	<0.1	1	5	6.4	0.031
TP16/0.4-0.6	<0.2	<0.5	<1	<3	<25	<250	<0.05	<0.05	NT	NT	NT	NT	<4	<0.4	1	2	3	<0.1	<1	4	6.3	0.012
TP17/0-0.3	<0.2	<0.5	<1	<3	<25	<250	0.05	0.05	NIL	NIL	<5	N	5	<0.4	7	6	12	0.1	2	13	5.8	0.025
TP17/0.4-0.5	<0.2	<0.5	<1	<3	<25	<250	0.3	0.08	NT	NT	NT	N	6	<0.4	3	9	11	0.2	1	11	6.0	0.010
TP18/0.4-0.5	<0.2	<0.5	<1	<3	<25	<250	0.05	0.05	NT	NT	NT	NT	5	<0.4	<1	7	12	<0.1	<1	4	6.4	0.011
TP23/0-0.3	<0.2	<0.5	<1	<3	<25	<250	0.2	0.06	NIL	NIL	<5	N	10	<0.4	5	8	17	0.2	2	19	6.7	0.020
TP23/0.4-0.6	<0.2	<0.5	<1	<3	<25	<250	<0.05	<0.05	NT	NT	NT	NT	4	<0.4	1	<1	3	<0.1	<1	2	6.4	0.013
Statistical Analysi	s of Conta	minant Co	oncentratio	ons in Filli	ng (mg/kg	1)		-														
Maximum	NA	NA	NA	NA	NA	NA	29	1.6	NA	NA	NA	NA	41	0.5	42	22	50	0.3	21	42	9.9	0.200
Minimum	NA	NA	NA	NA	NA	NA	NIL	<0.05	NA	NA	NA	NA	<4	<0.4	<1	<1	<1	<0.1	<1	<1	5.3	0.008
Average	NA	NA	NA	NA	NA	NA	1.1	0.09	NA	NA	NA	NA	5.3	NA	3.3	4.8	8.4	NA	1.3	8.9	6.2	0.023
Std. Deviation	NA	NA	NA	NA	NA	NA	4.5	0.25	NA	NA	NA	NA	9.2	NA	6.4	5.7	9.2	NA	3.3	9.1	0.7	0.031
95% UCL	NA	NA	NA	NA	NA	NA	4.1	0.26	NA	NA	NA	NA	11.4	NA	7.5	8.6	14.5	NA	3.4	15.0	6.4	0.043

Notes: B = Benzene; T = Toluene; E = Ethylbenzene; X = Xylene; TRH = total recoverable hydrocarbons; +PAH = Positive polycyclic aromatic hydrocarbons; B(a)P = Benzo(a)pyrene; OCP = Organochlorine pesticides; PCB = Polychlorinated biphenyls; As = Arsenic; Cd = Cadmium; Cr = Chromium; Cu = Copper; Pb = Lead; Hg = Mercury; Ni = Nickel; Zn = Zinc; EC = electrical conductivity; NT = Not tested; NA = not applicable

YELLOW shading refers to an exceedance as shown in Table 5

Table 4: Contaminant Concentrations in Natural Soil

Sample/	В	т	Е	X	TRH ₆₋₉	TRH ₁₀₋₃₆	+PAH	B(a)P	+OCP	+PCB	Phenol	Asbestos	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	рН	EC
Depth (m)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	(Y/N)	mg/kg	units	dS/m							
Natural Soil (2017)																					
BH101/4.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	1	2	<1	<0.1	<1	2	6.1	0.008
BH102/2.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	1	2	3	<0.1	<1	3	6.0	0.009
BH103/1.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	<1	2	<1	<0.1	<1	3	5.7	0.031
BH104/1.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	1	<1	2	<0.1	<1	4	5.8	0.011
BH105/1.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	1	3	3	<0.1	<1	4	6.5	0.018
BH111/2.9-3.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	1	<1	3	<0.1	<1	2	6.1	0.010
BH112/0.5	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	4	4	10	<0.1	2	11	5.6	0.064
BH114/1.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	2	1	3	<0.1	<1	4	6.0	0.013
BH116/1.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	0.6	<1	1	7	<0.1	<1	3	6.4	0.014
BH119/0.5	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	<1	2	2	<0.1	<1	5	5.8	0.012
BH120/0.5	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	9	<0.4	8	7	16	0.1	3	17	8.0	0.130
BH121/1.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	1	2	3	<0.1	<1	7	6.6	0.012
BH122/1.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	8	4	6	<0.1	8	7	6.6	0.018
BH123/0.5	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	<1	1	3	<0.1	<1	2	6.4	0.015
BH125/0.5	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	2	7	4	<0.1	2	9	6.1	0.017
BH127/0.5	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	1	2	3	<0.1	1	13	5.9	0.013
BH129/0.5	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	2	2	2	<0.1	1	12	6.0	0.016
BH129/2.0	<0.2	<0.5	<1	<3	<25	<250	NIL	<0.05	NIL	NIL	<5	N	<4	<0.4	2	<1	1	<0.1	<1	1	6.1	0.015
Statistical Analysi	is of Conta	minant Co	oncentrati	ons in Nat	ural Soil (I	mg/kg)	L	I			1								L	L		
Maximum	NA	NA	NA	NA	NA	NA	0.1	NA	NA	NA	NA	NA	9	0.6	8	7	16	0.1	8	17	8.0	0.130
Minimum	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<4	<0.4	<1	<1	<1	<0.1	<1	1	5.6	0.008
Average	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.9	2.3	3.9	NA	0.9	6.1	6.2	23.7
Std. Deviation	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.4	2.1	3.9	NA	2.0	4.6	0.5	29.4
95% UCL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.4	4.4	7.9	NA	3.0	8.7	6.4	53.9

Notes: B = Benzene; T = Toluene; E = Ethylbenzene; X = Xylene; TRH = total recoverable hydrocarbons; +PAH = Positive polycyclic aromatic hydrocarbons; B(a)P = Benzo(a)pyrene; OCP = Organochlorine pesticides; PCB = Polychlorinated biphenyls; As = Arsenic; Cd = Cadmium; Cr = Chromium; Cu = Copper; Pb = Lead; Hg = Mercury; Ni = Nickel; Zn = Zinc; EC = electrical conductivity; NT = Not tested; NA = not applicable

Table 5: Comparative Criteria

Description	В	т	E	X	TRH ₆₋₉	TRH ₁₀₋₃₆	+PAH	B(a)P	+OCP	+PCB	Phenol	Asbestos	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	рН	EC
Description	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	(Y/N)	mg/kg	units	dS/m							
Waste Classificat	aste Classification Guidelines (2014)																					
CT1	10	288	600	1000	650	10000	200	0.8	Various	50	288	N	100	20	100	NA	100	4	40	NA		
ENM Order (2014)	ENM Order (2014)																					
Max. Average	NA	NA	NA	NA	NA	250	20	0.5	NA	NA	NA	N	20	0.5	75	100	50	0.5	30	150	5-9	1.5
Absolute Max.	0.5	65	25	15	NA	500	40	1.0	NA	NA	NA	N	40	1	150	200	100	1	60	300	4.5-10	3

Current and Previous Borehole Logs

TEST PIT LOG

SURFACE LEVEL: --

In Situ Waste Classification & ENM Assessment **EASTING**:

NORTHING:

PIT No: TP01 PROJECT No: 84944.02 DATE: 23/10/2019 SHEET 1 OF 1

Γ			Description	. <u>0</u>		San	npling	& In Situ Testing		_				
Ē	בן נ	Depth (m)	of E E Results &		Results &	Vate	Dynamic Penetrometer Test (blows per mm)							
		()	Strata	Ū	Ţ	Del	San	Comments			5 10	0 1	5 20	D
	-		FILL/Silty SAND SM: fine to medium grained, brown, trace rootlets, dry to moist	\bigotimes	E/B	0.0				-				
	-	0.3	FILL/SAND SW: fine to medium grained, yellow-brown mottled grey sand, trace brown-yellow clayey sand		E/B	0.3 0.4 0.5				-				
	Ē	0.0	Pit discontinued at 0.6m; Limit of investigation							-				
	-1									-1				
	-									-				
	Ę									-				
	-									-				
	-									F				
	-2									2				
	ŀ									-				
	-									L				
	-									-				
	-									-				
	-3									-3				
	-									-				
	Ē									E				
	-4									-4				
	Ę									-				
	-									-				
	Ę									-				
	-									F				
	-5									-5				
	Ē									Ē				
	E									[
	Ę									L				
	-									-				
	-6									-6				
	-									-				
	-									F				
	F									F				
	[_,									-7				
	ľ									Ľ				
	Ę									ŀ				
	ŀ									ŀ				
	ŀ									ŀ				
L	F									ŀ				

RIG: 15t Excavator

LOGGED: JJH

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

CLIENT:

PROJECT:

Cranbrook School

LOCATION: Cranbrook School, Bellevue Hill

	SAMPLING & IN SITU TESTING LEGEND										
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)						
В	Bulk sample	Р	Piston sample	PL(A)) Point load axial test Is(50) (MPa)						
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)						
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D	Disturbed sample	⊳	Water seep	S	Standard penetration test						
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)						

□ Sand Penetrometer AS1289.6.3.3□ Cone Penetrometer AS1289.6.3.2

SURFACE LEVEL: --

In Situ Waste Classification & ENM Assessment **EASTING**:

NORTHING:

PIT No: TP02 **PROJECT No:** 84944.02 **DATE:** 23/10/2019 SHEET 1 OF 1

Γ		Description	<u>i</u>		Sam	npling a	& In Situ Testing	_	_		
Я	Depth (m)	of	iraph Log	/pe	epth	nple	Results &	Wate	Dynam	lc Penetro blows per	meter Test mm)
		Strata		Ύ		Sar	Comments		5	10	15 20
	-	FILL/Silty SAND SM: fine to medium grained, brown, trace rootlets, dry to moist		E/B	0.0						
	- 0.4	FILL/SAND SW: fine to medium grained, yellow-brown		E/B	0.4						· · · · · · · · · · · · · · · · · · ·
	-	(crushed coffee rock), moist		>	0.0				-		
	-1 1.0	Pit discontinued at 1.0m; Limit of investigation							1		
	-										• • • • • • • • •
	-										
	-								-		
	-2								-2		
	-									:	
	-										
	-									:	
	-3								-3		
	-										
	-									:	
	-										
	-4								-4		
	-										· · · · · · · · · · · · · · · · · · ·
	-										
	-								-		
	-5										
	-										
	-										
	-6								-6		
	-										
	-										· · · · · · · · · · · · · · · · · · ·
	-										
	-7								-7		
	-										
	-										
	ŀ										<u> </u>

RIG: 15t Excavator

LOGGED: JJH

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

	SAMP	LING	& IN SITU TESTING	LEGE	ND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

CLIENT: PROJECT:

LOCATION: Cranbrook School, Bellevue Hill

Cranbrook School

SURFACE LEVEL: --

In Situ Waste Classification & ENM Assessment **EASTING**:

NORTHING:

PIT No: TP03 PROJECT No: 84944.02 DATE: 23/10/2019 SHEET 1 OF 1

			Description	. <u>c</u>		Sam	npling &	& In Situ Testing	_		
	Ч	Depth (m)	of	Log	эс	oth	Iple	Results &	Vate	Dynamic (bl	ows per mm)
		()	Strata	Ū	Т _У Г	Det	San	Comments	>	5	10 15 20
İ	-		FILL/Silty SAND SM: fine to medium grained, brown, trace	\otimes	F/B	0.0				-	
	ļ	0.3	rootlets, dry to moist			0.3					
	Ę		FILL/SAND SW: fine to medium grained, yellow-brown mottled grey sand, trace brown-yellow clayey sand		E/B	0.4				:	
	ŀ		(crushed coffee rock), moist								
	E			\mathbb{K}	>					ł i	
	F	-1 1.0	Pit discontinued at 1 0m: Limit of investigation	KXX						1	
	F									-	
	F										
	F									-	
	-									-	
		-2								-2	
	ļ										
	Ę										
	E									[:	
	E										
	-	2									
	F	- 3									
	F									-	
	F									-	
	F										
	-										
		-4								-4	
	Ę										
	E										
	E									E :	
	E									ł	
	F	-5								-5	
	F									-	
	F										
	Ę										
	F										
		-6								-6	
	Ľ										
	E									t i	
	E										
	F									ł	
		-								-	
	F	- /								F' :	
	F									F	
	F									F i	
	F								1	ļ :	
										1	
1					L	L			1	L	<u> </u>

RIG: 15t Excavator

LOGGED: JJH

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

Cranbrook School

LOCATION: Cranbrook School, Bellevue Hill

CLIENT: PROJECT:

REMARKS:

	SAMI	PLING	& IN SITU TESTING	LEGE	ND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

SURFACE LEVEL: --

In Situ Waste Classification & ENM Assessment **EASTING**:

NORTHING:

PIT No: TP04 **PROJECT No:** 84944.02 **DATE:** 23/10/2019 SHEET 1 OF 1

Γ	Γ		Description	С		Sam	pling &	& In Situ Testing						
RL	De	epth	of	aphi Log	е	oth	ple	Reculte &	Vater	Dyr	namic F blov)	Penetro ws per	meter [`] mm)	Test
	`	,	Strata	<u>م</u> _	Тур	Dep	Sam	Comments	5	e	5 1	0 1	5	20
	-		FILL/Silty SAND SM: fine to medium grained, brown, trace rootlets, dry to moist	\bigotimes	E/B	0.0				-				:
		0.3	FILL/SAND SW: fine to medium grained, yellow-brown mottled grey sand, trace brown-yellow clayey sand (crushed coffee rock), moist		E/B	0.3 0.4 0.5				-			•	•
	E	0.7	Pit discontinued at 0.7m; Limit of investigation										: : :	÷
	-1									-1				
	ł													
	Ł													
	ł													
	ļ									-				-
	-2									-2				
	ŀ												:	
	F													:
	F									-				
	[
	[:	
	Ł												:	
	ŀ												:	
	ł												•	:
	-4									-4			:	
	ļ									-				
	ļ									-				
	ļ													
	Ę												:	
	-5									-5			:	
	F												:	
	F									-			•	:
	E									[
	Ł													
	-6									-6				-
	ŀ													
	ļ													
	ļ									;				
	ŧ									-				
	-7									-7			:	
	F									-			:	:
	F									-			:	:
	[[:	:
	-									-			:	

RIG: 15t Excavator

LOGGED: JJH

SURVEY DATUM: MGA94

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

CLIENT:

PROJECT:

Cranbrook School

LOCATION: Cranbrook School, Bellevue Hill

	SAMI	PLING	& IN SITU TESTING	LEGE	ND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

SURFACE LEVEL: --

In Situ Waste Classification & ENM Assessment **EASTING**:

NORTHING:

PIT No: TP08 PROJECT No: 84944.02 DATE: 23/10/2019 SHEET 1 OF 1

		Description	<u>i</u>		San	npling 8	& In Situ Testing	L	_			
Ч	Depth (m)	of	Log	эс	g	ple	Results &	Vate	Dyi	namic Pe (blows	netrometer s per mm)	lest
	()	Strata	Ū	۲ اکر	Del	Sam	Comments	>		5 10	15	20
-		FILL/Silty SAND SM: fine to medium grained, brown, trace	\boxtimes	2					-			
F	0.3	rootlets, dry to moist	\bigotimes						F		•	÷
Ę		mottled grey sand, trace brown-yellow clayey sand	\otimes	}					-		•	
ļ		(crushed coffee rock), moist		E/B*	0.6				-			÷
ţ			\otimes	}	0.8				-		•	
F	1			8					-1		•	÷
ţ			\otimes	>					-			÷
ł										:	:	÷
ł			\otimes		1.6				Ľ		•	
ł					1.8				-			-
F	2		\otimes	Ì					-2	:	•	
F									F		•	
F			\otimes	}					-			-
ţ				}	2.6				-		•	
ļ			\otimes	E/B	2.8				-		•	
Ł	3			Ś					-3			
ł			\bigotimes	}					-			
ł				}							•	
Ł					36				Ľ			
F				E/B	3.0				-	:	•	:
F			\otimes	>	3.8				[÷
F	4			}					-4			÷
F			\otimes	}					-			
Ę				}					ļ			
ţ			\otimes	E/B	4.6				-			
ţ				}	4.8				-			
F	5		\otimes	}					-5			
ł				}							•	
ł			\otimes	}					Ľ			-
ł				}								
F			\otimes	Ì					-		•	
F	6 6.0	SAND SW: find to modium grained, gravite dark grav							-6			
Ę		moist, aeolian]					-			
ţ					6.4				-		•	
ļ	6.5	Pit discontinued at 6.5m; Limit of investigation	1		6.5				-			:
ţ									-			
Ł	7								-7		•	
ŀ	-								ŀ		•	:
F									ŀ		•	•
F									ŀ		•	
F									ł		•	:
F									F		•	:
				-	-			-		· · · ·		•

RIG: 15t Excavator

LOGGED: JJH

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

Cranbrook School

LOCATION: Cranbrook School, Bellevue Hill

CLIENT: PROJECT:

REMARKS: * BD1/20191023 taken at 0.6-0.8m

	SA	MPLING	& IN SITU TESTING	JLEGE	ND	1
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample	PL(A)) Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	
С	Core drilling	W	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
Е	Environmental sample	e 📱	Water level	V	Shear vane (kPa)	

SURFACE LEVEL: --

In Situ Waste Classification & ENM Assessment **EASTING**:

NORTHING:

PIT No: TP09 PROJECT No: 84944.02 DATE: 23/10/2019 SHEET 1 OF 1

Г		Description	0		San	npling &	& In Situ Testing						
	Depth	of	aphic og	e	£		Desults 9	ater/	Dyr	namic P (blov	enetror	neter T	est
	(11)	Strata	ů,	Typ	Dep	Sam	Comments	3	ŧ	5 10) 1	5 2	20
F	-	FILL/Silty SAND SM: fine to medium grained, brown, trace	\otimes	E/B	0.0				-				
	[_				0.3								:
		FILL/SAND SW: fine to medium grained, yellow-brown mottled grev sand, trace brown-yellow clavey sand		>									
	ļ	(crushed coffee rock), moist			0.8				-				
	-1			E/B	1.0				-1				:
	-			>									
	[1								_				
		Pit discontinued at 1.5m; Limit of investigation											÷
	-								-				
	-2								-2				÷
	-								-				÷
	F												
	[:
	-3								-3				
	-								-				:
	-								-				:
	-												
	E												:
	-4								-4				-
	-								-				
	-								-				÷
	-								-				
	-												
	[-5				÷
	L												
	-								-				
	-								-				÷
	-6								-6				
	-												
	E												÷
	ļ												
	-								-				
	-7								-7				÷
	-												
	-												:
	[:
	-								-				

RIG: 15t Excavator

LOGGED: JJH

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

Cranbrook School

LOCATION: Cranbrook School, Bellevue Hill

CLIENT: PROJECT:

REMARKS:

	SAME	LING	& IN SITU TESTING	LEGE	ND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	ž	Water level	V	Shear vane (kPa)

SURFACE LEVEL: --

In Situ Waste Classification & ENM Assessment **EASTING**:

NORTHING:

PIT No: TP10 PROJECT No: 84944.02 DATE: 23/10/2019 SHEET 1 OF 1

Γ		Description	. <u>0</u>		Sam	npling a	& In Situ Testing						
R	Depth (m)	of	raph Log	be	pth	aldr	Results &	Vate	Dyr	namic F (blo)	venetror vs per i	neter T nm)	est
		Strata	Ū	Tyl	Del	San	Comments		5	5 1	0 1	5 2	20
		FILL/Silty SAND SM: fine to medium grained, brown, trace		E/B	0.0		*BD2/20191024 taken at 0-0.3m						
	- 04		\boxtimes		0.3								
	-	Pit discontinued at 0.4m; Limit of investigation											
	-												
	-1								-1				
													-
	-												
	-												
	-												-
	-2								-2				-
	-								-				
	-												
	-												
	-												
	-3								-3				-
	-								[:
	-												:
	-												-
	- 4								4				-
	L I												
	-								[-
	5								5				
													:
													-
									[-
	_								6				:
	Ľ												:
	E I								ł				:
									[
	[Ł				
	-								L				
									[
	[Ł				
	-								-				
	[[:
	-								ŀ				-

RIG: 15t Excavator

LOGGED: JJH

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

Cranbrook School

LOCATION: Cranbrook School, Bellevue Hill

CLIENT: PROJECT:

REMARKS:

	SAMI	PLING	& IN SITU TESTING	LEGE	ND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)) Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
Е	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

SURFACE LEVEL: --

In Situ Waste Classification & ENM Assessment **EASTING**:

NORTHING:

PIT No: TP11 PROJECT No: 84944.02 DATE: 23/10/2019 SHEET 1 OF 1

			Description	<u>.</u>		San	npling a	& In Situ Testing					
	۲ ۲	Depth (m)	of	aph Log	e	ţ	ple	Results &	Vate	Dynamic (b	Penetroi ows per	meter Te mm)	est
		(11)	Strata	<u>ق</u> _	Typ	Dep	Sam	Comments	5	5	. 10 1	5 20)
ł	-		FILL/Silty SAND SM: fine to medium grained, brown, trace	\boxtimes	-	0.0	- 05				:		
	Ł	0.3	rootlets, dry to moist	\mathbb{K}	E/B	0.3							
	+	0.0	FILL/SAND SW: fine to medium grained, yellow-brown			0.5				-			
	F		(crushed coffee rock), moist							F :	÷	i i	
	ţ			\mathbb{N}		0.8							
	Ĺ	1 10			E/B	_10_						: :	
	ŀ		Pit discontinued at 1.0m; Limit of investigation			1.0							
	F									-			
	F												
	ţ												
	ļ												
	-2	2								-2			
	F									-	÷	: :	
	F									-			
	ţ												
	t												
	Ŀ	,											
	F	2											
	F												
	Ę										:	: :	
	t												
	F												
	-4	1								4			
	F												
	ţ										÷	:	
	ţ												
	Ł									E :	÷	: :	
	ŀ,	-											
	F)								-5			
	ţ												
	ţ												
	Ł									E :	÷	i i	
	-									-			
	Fe	6								6	-	: :	
	ţ												
	t												
	F										÷	i i	
	F									-			
	F									[:	÷	i i	
	† 7	7								-7			
	ļ									1			
	Ł									t i			
	-									+	÷		
	F									-			
	F									t i	<u> </u>		

RIG: 15t Excavator

LOGGED: JJH

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

CLIENT:

PROJECT:

Cranbrook School

LOCATION: Cranbrook School, Bellevue Hill

	SAMI	PLING	& IN SITU TESTING	LEGE	ND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)) Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
Е	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

SURFACE LEVEL: --

In Situ Waste Classification & ENM Assessment **EASTING**:

NORTHING:

PIT No: TP12 **PROJECT No:** 84944.02 **DATE:** 23/10/2019 SHEET 1 OF 1

ſ			Description	.ci		San	npling	& In Situ Testing		_		
Ī	r L	Depth (m)	of	aph Log	e	th	ple	Results &	Vate	Dynam	ic Penetro (blows per	meter Test mm)
		()	Strata	Q_	Typ	Dep	Sam	Comments	>	5	10	15 20
F	-		FILL/Silty SAND SM: fine to medium grained, brown, trace	\boxtimes	>					-	<u>.</u>	
	ļ	0.3	rootlets, dry to moist									: :
	t		FILL/SAND SW: fine to medium grained, yellow-brown mottled grey sand trace brown-yellow clayey sand	\mathbb{K}	*							
	ŀ		(crushed coffee rock), moist	\mathbb{N}	E/B	0.6						
	-			$ \rangle\rangle$		0.8				-		
	Ę.	1		\mathbb{K}	×					-1		÷ ÷
	ļ				Ś							
	ľ			\otimes	\$							
	-			\mathbb{N}	>	16				-		: :
	F				E/B	1.0				F		
	Ę			\mathbb{K}	>	1.8				-		
	-2	2			×					-2		: :
	ŀ				\$							
	-			\mathbb{N}	>					- :		÷ ÷
	F			$ \rangle\rangle$	×	2.6				-		
	ļ			\mathbb{K}	E/B	2.8				1		÷ ÷
	Ļ;	3			}					-3		
	ŀ			\otimes	>							÷ ÷
	ł				>					-		
	F			$ \rangle\rangle$	2					F		
	Ę			\mathbb{N}	E/B	3.6						
	ļ			$ \rangle\rangle$	}	3.8						
	Ľ	1		\mathbb{K}	>					-4		
	ŀ											
	ŀ			\otimes	2					-		
	F	4.6	CAND CIV/fine to modium grained vallow maint applian		>	4.6						
	Ę		SAND SW.line to medium grained, yellow, moist, aeolian		E/B	4.8						
	Ļ	5 5.0								-5		÷
	ļ		Pit discontinued at 5.0m; Limit of investigation									
	E											
	ł									-		
	F											
	-	6								-6		
	ļ											
	l											
	-									-		
	F									-		
	F	7								-7		
	ļ									1		
	ļ											
	ŀ											
										Ł		
	[ŀ		

RIG: 15t Excavator

LOGGED: JJH

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

CLIENT:

PROJECT:

Cranbrook School

LOCATION: Cranbrook School, Bellevue Hill

	SAMP	LING	& IN SITU TESTING	LEGE	ND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
в	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

Douglas Partners Geotechnics | Environment | Groundwater

SURFACE LEVEL: --

In Situ Waste Classification & ENM Assessment **EASTING**:

NORTHING:

PIT No: TP13 PROJECT No: 84944.02 DATE: 23/10/2019 SHEET 1 OF 1

			Description	<u>ic</u>		Sam	npling &	& In Situ Testing		_				
ā		epth (m)	of	raph Log	эс	oth	Iple	Results &	Vate	Dyi	namic F blov)	'enetror ws per r	neter I nm)	est
		()	Strata	Ū	Ţ	Dep	Sam	Comments	>		5 1	0 1	5 2	20
F	-		FILL/Silty SAND SM: fine to medium grained, brown, trace	\boxtimes	E/B	0.0				-				
	ļ	0.3	rootlets, dry to moist			0.3				-				-
	ţ		FILL/SAND SW: fine to medium grained, yellow-brown mottled grey sand, trace brown-yellow clavey sand	\mathbb{K}						-				
	Ł		(crushed coffee rock), moist	\bigotimes										:
	F			$ \rangle\rangle$	E/D	0.8				-				
	-1			\otimes	E/B	1.0				-1				:
	ţ			\bigotimes						-				
	Ł			\mathbb{K}										
	ŀ			\bigotimes						-				:
	F			\mathbb{K}						-				
	F			\mathbb{N}						F				:
	-2			\mathbb{X}						-2				
	ţ			\otimes										:
	t			\bigotimes						Ľ				-
	-			\mathbb{K}						-				
	F			\bigotimes		2.8				F				-
	-3			$ \times\rangle$	E/B	3.0				-3				
	ţ	3.2								-				
	ļ		Pit discontinued at 3.2m; Limit of investigation							-				
	ł													
	ł									Ī				
	F.									[
	F ⁴									-4				:
	ţ									-				
	ţ									-				
	Ł													
	ł									-				
	-5									-5				
	Ę									ļ				:
	ţ									1				
	t													:
	ŀ									-				
	-									-				:
	-6									-6				-
	Ļ									ļ				:
	t													
	Ł													
	ł									-				
	-7									-7				
	Ē									F				
	ţ									ļ				
	ţ									ļ				-
	Ł									l				
	-									-				

RIG: 15t Excavator

LOGGED: JJH

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

CLIENT:

PROJECT:

Cranbrook School

LOCATION: Cranbrook School, Bellevue Hill

	SAMF	LING	& IN SITU TESTING	LEGE	ND
Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

SURFACE LEVEL: --

In Situ Waste Classification & ENM Assessment **EASTING**:

NORTHING:

PIT No: TP14 PROJECT No: 84944.02 DATE: 23/10/2019 SHEET 1 OF 1

ſ			Description	<u>ic</u>		Sam	npling a	& In Situ Testing		_				
	님	Depth (m)	of	aph Log	e	g	ple	Results &	Vate	Dyi	namic F blo ^r (blo	Penetror ws per r	meter T mm)	est
		()	Strata	Ū	Ţ	Dep	Sam	Comments	>		5 1	0 1	.5 2	.0
ľ	Ī		FILL/Silty SAND SM: fine to medium grained, brown, trace		E/B	0.0					:			
		0.3	FILL/SAND SW: fine to medium grained, yellow-brown mottled grey sand, trace brown-yellow clayey sand (crushed coffee rock), moist			0.3 0.4 0.5				-	•			
	Ē	0.8	Bit discontinued at 0.8m: Limit of investigation											
		1								1 - -	•			
	-									-	•			
		2								-2	•			•
										-	•			•
		3								-3	•			
	-									-	•			•
	-									-				
	 - -	4								-4	•			
	-									- - -	•			
		5								- - -5				
	-									-	• • • • • •			
		6									•			•
		•									•			
										-				
		7								-7	- - - - - - - - -			
										- - -	- - - - - - - - - - - -	•		
	-									-				

RIG: 15t Excavator

LOGGED: JJH

SURVEY DATUM: MGA94

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

CLIENT:

PROJECT:

Cranbrook School

LOCATION: Cranbrook School, Bellevue Hill

	SAMI	PLING	& IN SITU TESTING	LEGE	ND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

SURFACE LEVEL: --

In Situ Waste Classification & ENM Assessment **EASTING**:

NORTHING:

PIT No: TP15 PROJECT No: 84944.02 DATE: 23/10/2019 SHEET 1 OF 1

Γ			Description	. <u>0</u>		Sam	pling a	& In Situ Testing					
<u>a</u>	De	epth m)	of	aph Log	эс	oth	ple	Results &	Vatei	Dynam	ic Penetr blows pe	ometer T r mm)	est
	`	,	Strata	ା ଜି –	Typ	Dep	Sam	Comments	5	5	10	15 2	20
	-		FILL/Silty SAND SM: fine to medium grained, brown, with	\boxtimes	F/B	0.0				-	i	<u>.</u>	
	Ę		clay, trace rootlets, dry to moist	\mathbb{K}		0.3		Irrigation pipe trench with					:
	Ę	0.4	FILL/SAND SW: fine to medium grained, yellow-brown	\bigotimes	E/B	0.4		fine to medium igenous gravel fill at 0.4.6m			-		:
	Ę	0.6	─ mottled grey sand, trace brown-yellow clayey sand (crushed coffee rock), moist			-0.6-				-		:	:
	ļ		Pit discontinued at 0.6m; Limit of investigation										
	-1									-1	÷		:
	Ł												:
	Ł										-		1
	Ł												
	Ł												:
	-2									-2			:
	F									F			:
	F									F			-
	Ę									:	:		:
	ļ										÷		:
	-3									-3			:
	Ł										:		:
	Ł												:
	Ł												
	Ł										:		:
	F.												:
	-4									-4			:
	F											-	-
	Ę												:
	ļ												:
	ţ.										:		:
	-5									-5			
	Ł												÷
	Ł										:	-	
	ł												
	-										:		÷
	-6									-6			÷
	F									F ÷	-	-	1
	F									F .	÷		:
	ļ									1			:
	ţ										-		-
	-7									-7	÷	•	:
	ţ									t i			-
	Ł											-	
	Ł									t i		•	:
	Ł									ŧ			-
	ŀ									ł		-	:

RIG: 15t Excavator

LOGGED: JJH

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

Cranbrook School

LOCATION: Cranbrook School, Bellevue Hill

CLIENT: PROJECT:

REMARKS:

	SAMI	PLING	& IN SITU TESTING	LEGE	ND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)) Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

SURFACE LEVEL: --

In Situ Waste Classification & ENM Assessment **EASTING**:

NORTHING:

PIT No: TP16 PROJECT No: 84944.02 DATE: 23/10/2019 SHEET 1 OF 1

ſ			Description	. <u>0</u>		Sam	pling a	& In Situ Testing					
ā	뉟	Depth (m)	of	aph Log	эс	th	ple	Results &	Vate	Dyr	namic P (blow	enetrom vs per m	neter Test nm)
		()	Strata	Ū	Ty	Dep	Sam	Comments	>	5	5 10	15	20
	ŀ		FILL/Silty SAND SM: fine to medium grained, brown, trace	\bigotimes	E/B	0.0							
	ł	0.4		\bigotimes		0.3							:
	ł	0.4	FILL/SAND SW: fine to medium grained, yellow-brown	\bigotimes	E/B	0.4							
	ţ		(crushed coffee rock), moist										
	Ļ	1	Pit discontinued at 0.6m; Limit of investigation							-1			:
	ţ												:
	F												
	F												
	E												
	F	2								-2			:
	ł												
	ł												:
	ţ												
	ţ												:
	F	3								-3			
	F									-			
	E									[:
	ł												
	Ę.	4								-4			
	ļ												
	F												:
	F									-			
	E									[
	ŀ	5								-5			:
	ţ												
	ţ									-			
	ŀ												
	F	-											
	F	Ď								-6			
	E									[
	ł												
	ł									t i			:
	ŀ	7								-7			
	ŀ									ļ			
	F									ŀ			:
	Ē									[
	Ę									ŀ			
L									1	L	:;	:	;

RIG: 15t Excavator

LOGGED: JJH

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

CLIENT:

PROJECT:

Cranbrook School

LOCATION: Cranbrook School, Bellevue Hill

	SAMI	PLING	& IN SITU TESTING	LEGE	ND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)) Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
Е	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

SURFACE LEVEL: --

In Situ Waste Classification & ENM Assessment **EASTING**:

NORTHING:

PIT No: TP17 PROJECT No: 84944.02 DATE: 23/10/2019 SHEET 1 OF 1

[Description	. <u>e</u>		Sam	npling &	& In Situ Testing						
	묍	Depth (m)	of	raph Log	be	pth	aldr	Results &	Nate	Dy	namic F blov)	venetro vs per	meter I mm)	est
		. ,	Strata	G	Тy	De	San	Comments	-	4	5 1	0 1	5 2	0
	-		FILL/Silty SAND SM: fine to medium grained, brown, trace rootlets, dry to moist		E/B	0.0				-				
	-	0.3	FILL/SAND SW: fine to medium grained, yellow-brown mottled grey sand, trace brown-yellow clayey sand		E/B	0.3 0.4 0.5				-				
	Ę	0.0	Pit discontinued at 0.6m; Limit of investigation							ŀ				
	F	1								-1				
	ŀ									-				
	F									F				
	E									E				
	ł									L				
	F	2								-2				
	Ę									-				
	ŀ									-				
	F									F				
	Ē	2												
	E	3												
	ł									-				
	ļ									-				
	F									-				
	Ę	4								-4				
	F									-				
	F									F				
	E									E				
	E									-				
	-	5								-5				
	ļ									-				
	F									-				
	F									-				
	Ē	e												
	E	0												
	ł									-				
	ļ									ŀ				
	F									ŀ				
	F	7								-7				
	ŀ									F				
	F									E				
	E									[
	ļ									F				
L			1					1	1					

RIG: 15t Excavator

LOGGED: JJH

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

CLIENT:

PROJECT:

Cranbrook School

LOCATION: Cranbrook School, Bellevue Hill

	SAME	PLINC	3 & IN SITU TESTING	LEGE	ND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

SURFACE LEVEL: --

In Situ Waste Classification & ENM Assessment **EASTING**:

NORTHING:

PIT No: TP18 PROJECT No: 84944.02 DATE: 23/10/2019 SHEET 1 OF 1

Γ		Description	<u>.</u>		Sam	pling &	& In Situ Testing						
ā	Depth (m)	of	Log	be	pth	aldr	Results &	Nate	Dy	namic F blov)	'enetro ws per	meter 1 mm)	est
		Strata	G	Ţ	De	San	Comments	-		5 1	0 1	5 20	0
	- 0.3	FILL/Silty SAND SM: fine to medium grained, brown, trace rootlets, dry to moist		E/B	0.0				-	•			
	- 0.8 - - - - - - - - -	(crushed coffee rock), moist Pit discontinued at 0.5m; Limit of investigation			-0.5-				- - - - - 1 - -	•			
	2										· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	- - - - - - 3 - - - - - - - - - -								- 3	• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · ·
	- - - - - - - - - - -									• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	- - - - - - 5 - - - -									- - - - - - - - - - - - - - - - - - -	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · ·
	- - - - - - - - - - -									• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	- - - - 7 - - - -										· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	-								-	•			, , , , , , , , , , , , , , , , , , ,

RIG: 15t Excavator

LOGGED: JJH

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

CLIENT:

PROJECT:

Cranbrook School

LOCATION: Cranbrook School, Bellevue Hill

	SAMI	PLING	& IN SITU TESTING	LEGE	ND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

SURFACE LEVEL: --

In Situ Waste Classification & ENM Assessment **EASTING**:

NORTHING:

PIT No: TP23 **PROJECT No:** 84944.02 **DATE:** 23/10/2019 SHEET 1 OF 1

Γ			Description	. <u>0</u>		San	npling &	& In Situ Testing					
RL	De (r	pth n)	of	raph Log	be	oth	ple	Results &	Vate	Dynamic (b	: Penetro lows per	meter mm)	Test
	Ň	,	Strata	Ū	Ty	Del	San	Comments	>	5	10	15	20
	-		FILL/Silty SAND SM: fine to medium grained, brown, trace rootlets, dry to moist		E/B	0.0						•	
	- - -	0.4	FILL/SAND SW: fine to medium grained, yellow-brown mottled grey sand, trace brown-yellow clayey sand (crushed coffee rock), moist		E/B	0.4					•		
	- - -1	0.8	SAND SW: fine to medium grained, grey, moist, aeolian		E/B	0.8				-1	:	:	
	-												
		1.5	Pit discontinued at 1.5m; Limit of investigation	1							:	• • • •	•
	-2									-2		:	
												:	
												:	
	-3									-3			
												:	
	-4									-4			
												•	
	- 5									-5		•	
												•	
												:	
	-6												
	-												
	-										:	:	
	-7									-7			
	-											•	
	-											•	
	-												

RIG: 15t Excavator

LOGGED: JJH

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

CLIENT:

PROJECT:

Cranbrook School

LOCATION: Cranbrook School, Bellevue Hill

	SAME	LING	& IN SITU TESTING	LEGE	ND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	ž	Water level	V	Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3

SURFACE LEVEL: 16.13 AHD EASTING: 338378.84 **NORTHING:** 6250846.18 DIP/AZIMUTH: 90°/--

BORE No: BH101 **PROJECT No:** 84944.01 DATE: 12/4/2017 SHEET 1 OF 2

		Description	Degree of	<u>o</u>	Rock Strength	L	Fracture	Discontinuities	Sa	amplir	ng &	n Situ Testing
R	Depth (m)	of	Troutioning	iraph Log	igh High	Nate	Spacing (m)	B - Bedding J - Joint	/pe	ore c. %	aD %	Test Results
		Strata	H M M M M M M M M M M M M M M M M M M M	0	Ex Lo Very Medi Very Ex H	_	0.01 0.10 0.50 1.00	S - Shear F - Fault	ŕ	сğ	<u>ж</u>	Comments
16	-	TOPSOIL - dark brown, fine to medium silty sand topsoil, moist		X					A/E			
15	- 0.4 - - - - 1 -	FILLING - yellow-brown, fine to medium sand filling, dry to moist 0.7m: as above, grey-brown and yellow-brown		\times					A/E A			
14	-2	1.5m: as above, grey-brown and yellow brown mottled dark brown		\sim					A/E			
13	- 3 3.2	SAND - yellow-brown, fine to							A/E			
12		medium sand, dry to moist							A/E			
10												
6	7											
-												
8												
-	-											

RIG: Scout 2

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

DRILLER: JS

LOGGED: SI/RW TYPE OF BORING: Solid flight auger to 5.5m; Rotary to 14.35m; NMLC-Coring to 17.4m

CASING: HW to 5.4m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 13.7m (screen 10.7-13.7m; gravel 9.7-13.7m; bentonite 8.7-9.7m; backfill to 0.1m below ground level; grass over gatic cover)

	SAN	IPLING	J&INSITUTESTING	i LEGI	END								
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)								
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)					-			
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test ls(50) (MPa)	1.			12	C	Pa	rtn	orc
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			Dudy		3	- a		CI 3
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	11							
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		_ (Geotechnics	I Fn	viror	nment	Grou	ndwater
	· · · · · ·						_	000100111100				1 0/04/	/unutor

SURFACE LEVEL: 16.13 AHD EASTING: 338378.84 NORTHING: 6250846.18 DIP/AZIMUTH: 90°/-- BORE No: BH101 PROJECT No: 84944.01 DATE: 12/4/2017 SHEET 2 OF 2

Г		Description	Degree of		Rock	Fracture	Discontinuities	6	molir	20 8	In Situ Testing
L	Depth	Description	Weathering	phic pd	Strength	Spacing	Discontinuities	00		ly a	Test Results
R	(m)	Strata	EW MW SW FR	C al	Ex Low Very Low Low High Ex High	0.01 0.105 0.50 (W)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Comments
2	-112 -13	SAND - yellow-brown, fine to medium sand, dry to moist (continued)					Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping 0°- 10°				
	14.35 -15 -16 -17	SANDSTONE - medium and high strength, moderately weathered, slightly fractured and unbroken, red-brown and brown, medium to coarse grained sandstone					14.7m: B0°, fe 15.2m: B10°, cly vn, ti 15.72 & 15.75m: Cs	С	100	99	PL(A) = 4.14 PL(A) = 0.66 PL(A) = 1.52 PL(A) = 0.91
	- 17.4	Bore discontinued at 17.4m									

RIG: Scout 2

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

DRILLER: JS

LOGGED: SI/RW

CASING: HW to 5.4m

TYPE OF BORING: Solid flight auger to 5.5m; Rotary to 14.35m; NMLC-Coring to 17.4m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 13.7m (screen 10.7-13.7m; gravel 9.7-13.7m; bentonite 8.7-9.7m; backfill to 0.1m below ground level; grass over gatic cover)

SAME	LIN	G & IN SITU TESTING	i LEG	END									
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)									
B Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)									
BLK Block sample	U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test Is(50) (MPa)	1.						3 F 7	ne	rs
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	/ /		Dudy		15	F C	21 C		5
D Disturbed sample	⊳	Water seep	S	Standard penetration test	,,								
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics	1 E	Enviro	nmen	t I G	iroundw	vater
					 	_							

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

CLIENT: PROJECT:
 SURFACE LEVEL:
 16.28 AHD

 EASTING:
 338374.19

 NORTHING:
 6250784.3

 DIP/AZIMUTH:
 90°/-

BORE No: BH102 PROJECT No: 84944.01 DATE: 12/4/2017 SHEET 1 OF 2

Γ		Description	Degree of Weathering	<u>.0</u>	Rock Strength	Fracture	Discontinuities	Sa	mplir	ng & I	n Situ Testing
Ч	Depth (m)	of	11 octa ioning	Log		Spacing (m)	B - Bedding J - Joint	/pe	ore c. %	aD %	Test Results
		Strata	A M M M M M M M M M M M M M M M M M M M		Ex Low Medi Very Very	0.01	S - Shear F - Fault	ŕ	Ϋ́ς Β	<u>ж</u> .	Comments
10	0.2	medium silty sand topsoil, dry to		$\langle\!\!\!\langle$				A/E			
È	-	FILLING - dark brown, fine to		\bigotimes				A/E			
ł	- 0.0	medium sand filling with clay, dry									
Ē	-1	SAND - dark brown, fine to medium sand, dry to moist (possibly filling)						A/E			
15		SAND - grey fine to medium sand,									
È	-	1.4m: as above but becoming									
F	-	1.8m: as above but grey-brown									
È	-2							A/E			
-4	-										
ł	-										
Ē	-3										
- 22	-										
Ē	-										
ł	-										
Ē	-4										
4	-										
ŀ	-										
Ē	-				•						
Ē	-5				•						
Ę	-										
F	-				.						
Ē	- 6										
-	-										
-	-										
Ē	-										
ŧ	-7										
-0	-										
ŀ											
Ē	-										
È	-8				•						
-∞	-										
F											
Ē	- 9										
E.											
ŀ											
Ē	-										
Ĺ	-		Liiii	1							

RIG: Scout 2

DRILLER: JS

LOGGED: SI/RW

CASING: HW 11.6m

 TYPE OF BORING:
 Solid flight auger (TC-bit) to 5.5m; Rotary to 11.6m; NMLC-Coring to 17.45m

 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

 REMARKS:
 No free groundwater observed whilst augering

	SAMPLIN	G & IN SITU TESTII	NG LEGE	ND
A Auger sa	imple G	Gas sample	PID	Photo ionisation detector (ppm)
B Bulk san	iple P	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK Block sa	mple U,	Tube sample (x mm dia	.) PL(D)	Point load diametral test Is(50) (MPa)
C Core dri	ling W	Water sample	pp	Pocket penetrometer (kPa)
D Disturbe	d sample ▷	Water seep	S	Standard penetration test
E Environr	nental sample 📱	Water level	V	Shear vane (kPa)

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

CLIENT: PROJECT: SURFACE LEVEL: 16.28 AHD EASTING: 338374.19 NORTHING: 6250784.3 DIP/AZIMUTH: 90°/-- BORE No: BH102 PROJECT No: 84944.01 DATE: 12/4/2017 SHEET 2 OF 2

Γ		Description	Degree of	<u>.</u>	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng & l	n Situ Testing
RL	Depth (m)	of Strata		Graph	Very High Very High High Very High	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
. 9	-11	SAND - grey fine to medium sand, dry to moist <i>(continued)</i> 11.35m: yellow brown, fine to medium grained clayey sand					Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping 0°- 10°				
- +	-12 12.0	SANDSTONE - medium strength, highly weathered, slightly fractured, brown, coarse grained sandstone with some quartz gravel SANDSTONE - very low and low					11.86m: CORE LOSS: 140mm 12.4-12.6M: dS	с	86	50	PL(A) = 0.82
	- 13	weathered, slightly fractured, light grey and red-brown, fine to medium grained sandstone with some extremely low strength bands					∖ 12.8m: J60°, pl, ro, cln 12.85m: B0°, cly				PL(A) = 0.23
2	- 14						13.52-13.58m: Ds 13.65m: J60°- 70°, cu, ro, fe	С	100	92	PL(A) = 0.22
	- 14.4 	SANDSTONE - medium and medium to high strength, moderately weathered, slightly fractured, brown to red-brown, medium grained sandstone	1 				14.4-14.45m: Cs 14.4-14.45m: Cs 14.5-14.62m: B (x3) 0°- 5°, fe, cly co				PL(A) = 0.83
-	- 16						15.4m: J30°, he	с	100	92	PL(A) = 0.55
							16.15 & 16.42m: B (x2) 5°, fe 16.9m: B5°, fe, cly,				PL(A) = 2.87
	17 45						10mm				PL(A) = 0.84
	- 17.45	Bore discontinued at 17.45m									

RIG: Scout 2

DRILLER: JS

LOGGED: SI/RW

CASING: HW 11.6m

TYPE OF BORING: Solid flight auger (TC-bit) to 5.5m; Rotary to 11.6m; NMLC-Coring to 17.45m **WATER OBSERVATIONS:** No free groundwater observed whilst augering **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND												
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)								
B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)								
BLK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)								
C Core drilling	W	Water sample	pp	Pocket penetrometer (kPa)								
D Disturbed sample	⊳	Water seep	S	Standard penetration test								
E Environmental sample	¥	Water level	V	Shear vane (kPa)								
				· · ·								

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

 SURFACE LEVEL:
 16.75 AHD

 EASTING:
 338361.5

 NORTHING:
 6250706.3

 DIP/AZIMUTH:
 90°/-

BORE No: BH103 PROJECT No: 84944.01 DATE: 11/4/2017 SHEET 1 OF 2

		Description	Degree of Weathering	<u>.0</u>	Rock Strength	Fracture	Discontinuities	Sa	amplir	ng &	In Situ Testing
Ч	Depth (m)	of	l	Log		Spacing (m)	B - Bedding J - Joint	be	ore %	a a %	Test Results
	()	Strata	E SW MW	G	Ex Lo Very Very Very	0.05	S - Shear F - Fault	Ty	ပိမ္ရွိ	R .	Comments
Ē	-	TOPSOIL - dark brown, silty clay topsoil with rootlets, dry		X		I II II I II II		A/E			
F	- 0.5			ĎŽ				A			
10		SAND - yellow-brown mottled dark brown, iron indurated, fine to									
Ē	-1	medium sand, dry to moist						A/E			
-	- - - 19										
Ē	-	SAND - yellow-brown, fine to medium sand, dry to moist									
15	-	·····									
Ē	-2							A/E			
ŧ											
Ē	-										
-4	-										
Ē	- 3										
Ē	-										
ł	-										
-6	-										
ŧ	- 4										
Ē	-					I II II I II II					
F	-										
-5	-										
Ē	-5					I II II I II II					
ł	_				$\cdot \ \ \ \ \ \ \ \ \ \ $						
Ē	-										
-=											
Ē	-6										
ŧ	-										
Ē	-										
-9 [-										
ŀ	-7										
Ē	-										
F	-						Note: Unless otherwise stated_rock is fractured				
-00	-						along rough planar				
F	-8						bedding dipping 0 - 10				
E	-										
Ē	-	SANDSTONE - medium strength, slightly weathered then fresh									
ŧ	- - - 9	stained, fractured and slightly fractured light grey medium				i ii l i l	8.06m; B0° 5° up ro				PL(A) = 0.55
Ē	-	grained sandstone with some					fe stn	с	93	89	PL(A) = 0.43
ŧ	-	bands and traces of carbonaceous				╎╎┏┛╎│	9.45m: J20° nl ro fe				
	-	iaminations		\bigotimes			stn 9 6m ⁻ Cs. 50mm				
ŀ	9.85	5					9.65m: CORE LOSS:				
RIØ TY	G: Sco PE OF	ut 2 DRILL BORING: Solid flight auger (TC-bit	.ER: JS) to 8.5m; N	MLC	LOG Coring to 14.4m	GED: RW/JN	CASING: HQ	to 8.	5m		

WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS:

	SAM	PLIN	G & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	Doudiae
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	Duddias
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	¥	Water level	V Shear vane (kPa)	Geotechnics Enviro

 SURFACE LEVEL:
 16.75 AHD

 EASTING:
 338361.5

 NORTHING:
 6250706.3

 DIP/AZIMUTH:
 90°/-

BORE No: BH103 PROJECT No: 84944.01 DATE: 11/4/2017 SHEET 2 OF 2

Γ		Description	Degree of Weathering	Rock Strength	Fracture	Discontinuities	Sa	amplir	ng & l	n Situ Testing
RL	Depth (m)	of Strata	EW MW SSW Graph Caph	Ex Low Very Low High Very High Ex High	50000000000000000000000000000000000000	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
	- - - - - - - - - 11 - -	SANDSTONE - medium strength, slightly weathered then fresh stained, fractured and slightly fractured, light grey, medium grained sandstone with some extremely low and very low strength bands and traces of carbonaceous laminations (continued)				200mm 10.10, 10.15m: J45°, un, ro, cln 10.13m: J70°, un, ro, cln 10.26m: Ds, 20mm	С	93	89	PL(A) = 0.7
	- 12					11.66m: B0°- 5°, un, ro, cbs, st 11.68m: J0°- 30°, cu, ro, cbs, st 11.97m: J0°- 30°, cu, ro, fe stn				PL(A) = 0.36 PL(A) = 0.31
4	- 13 12.97					12.52m: J30°, pl, ro, cln CORE LOSS: 450mm	с	85	75	
- - - - -						្ក 13.68m: Cs, 10mm				PL(A) = 0.54
-	-14					13.72, 13.76m: J30°, pl, ro, cln 13.8m: Ds, 50mm 13.88m: Cs, 30mm				PL(A) = 0.47
	-15 -16 -17 -17 -18 -19	Bore discontinued at 14.4m - target depth reached								

RIG: Scout 2

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

DRILLER: JS

LOGGED: RW/JN

CASING: HQ to 8.5m

TYPE OF BORING:Solid flight auger (TC-bit) to 8.5m;NMLC-Coring to 14.4mWATER OBSERVATIONS:No free groundwater observed whilst augeringREMARKS:

SAN	APLIN	G & IN SITU TESTING	LEG	END		
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B Bulk sample	Р	Piston sample	PL(/	A) Point load axial test Is(50) (MPa)		Barrelaa Barteaara
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)	1.	l Dalidiae Parthere
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Dugias rai liicis
D Disturbed sample	⊳	Water seep	S	Standard penetration test		
E Environmental sample	¥	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
					_	

 SURFACE LEVEL:
 16.34 AHD

 EASTING:
 338308.87

 NORTHING:
 6250760.78

 DIP/AZIMUTH:
 90°/-

BORE No: BH104 PROJECT No: 84944.01 DATE: 12/4/2017 SHEET 1 OF 2

Γ		Description	Degree of Weathering	<u>.</u>	Rock Strength	Fracture	Discontinuities	Sa	mplir	ng & I	n Situ Testing
Я	Depth (m)	of		Graph Log		(m)	B - Bedding J - Joint	ype	Core Sc. %	åD %	Test Results &
-		Strata TOPSOIL - dark brown fine to	H H M M H M M H M M H M M H M M H M M H M M H M			0.010	3 - Shear F - Fault		0 Å	Ľ.	Comments
16	0.2	_medium silty sand topsoil, moist						AVE			
Ē	-	iron indurated, fine to medium sand,						A/E			
È	-	0.8m: as above but brown and									
ŧ	-1 - -	grey-brown mottled dark brown						A/E			
-15	- 1.3	SAND - yellow brown mottled brown									
F	-	sand, moist									
Ē	2							A/E			
-4	-										
Ē	-										
ł	-										
ŧ	-3										
-5	-										
F	-										
F	- 4										
12	-										
È	-										
ł	-										
È	-5				[*]						
Ę	- - -										
ł	-										
F	-6						Note: Unless otherwise stated, rock is fractured				
-¢	-						bedding dipping 0°- 10°				
Ē	-										
ŀ	6.8 - 6.9	SANDSTONE - medium strength,					6.8m: CORE LOSS:				PL(A) = 0.71
ŀ	,	slightly fractured, light grey and									
-6	-	sandstone					7.3-7.45m: B (x3) 0°, cly co, 1-2mm				
Ē	-										PL(A) = 0.36
È	-8 8.0	SANDSTONE - high strength, fresh,	┤╷╷┖┿┿┿┓				7.9 & 7.95m: B0°, fe		97	90	
	- - -	slightly fractured and unbroken, light grey, medium grained sandstone							51	50	
ŧ	- - -										PL(A) = 1.19
-	-9										
F	-										
	-						9.4m: B0°, cly, 5mm				
Ē	-							с	100	100	PL(A) = 1.2
Ł				•••••			>>				

RIG: DT100

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

DRILLER: SS

LOGGED: RW/SI

CASING: HW to 6.8m

TYPE OF BORING:Solid flight auger (TC-bit) to 5.5m;Rotary to 6.8m;NMLC-Coring to 12.4mWATER OBSERVATIONS:Free groundwater observed at 5.0m whilst augeringREMARKS:

SAN	NPLIN	G & IN SITU TESTING	LEG	END	1	
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	1	
B Bulk sample	Р	Piston sample	PL(/	A) Point load axial test Is(50) (MPa)		
BLK Block sample	U,	Tube sample (x mm dia.)	PL(!	D) Point load diametral test ls(50) (MPa)		Uniidiae Parthere
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		D ugias rai licis
D Disturbed sample	⊳	Water seep	S	Standard penetration test		
E Environmental sample	¥	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater

 SURFACE LEVEL:
 16.34 AHD

 EASTING:
 338308.87

 NORTHING:
 6250760.78

 DIP/AZIMUTH:
 90°/-

BORE No: BH104 PROJECT No: 84944.01 DATE: 12/4/2017 SHEET 2 OF 2

Γ		Description		ring i≌ _ Rock		Fracture	e Discontinuities		Sampling &		In Situ Testing
Ч	Depth (m)	of	, , , ,	Graph Log		(m)	B - Bedding J - Joint	ype	Core Sc. %	%gD	Test Results &
-	_	Strata SANDSTONE - high strength, fresh.	F S S W H E			0.06			0 2	Ľ.	Comments
· 9 · · · · · · · ·	- - - - - - - - - - 11 -	slightly fractured and unbroken, light grey, medium grained sandstone (continued)						с	100	100	PL(A) = 1.17
	- 12						11.9m [.] B0° clv 10mm				PL(A) = 1.01
	-										PL(A) = 1.08
	- 12.4	Bore discontinued at 12.4m									
	- 19										

RIG: DT100

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

DRILLER: SS

LOGGED: RW/SI

CASING: HW to 6.8m

TYPE OF BORING:Solid flight auger (TC-bit) to 5.5m;Rotary to 6.8m;NMLC-Coring to 12.4mWATER OBSERVATIONS:Free groundwater observed at 5.0m whilst augeringREMARKS:

SAM	PLIN	G & IN SITU TESTING	LEG	END					
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)					
B Bulk sample	P	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)		Ποιια	Inc	Dar	tnorc
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	/ • `	DUUY	1a 5	ra i u	IIEI 3
D Disturbed sample E Environmental sample	₽	Water seep Water level	S V	Standard penetration test Shear vane (kPa)	2	Geotechnics	I Enviro	onment C	Groundwater
			-		 _				

 SURFACE LEVEL:
 16.54 AHD

 EASTING:
 338303.82

 NORTHING:
 6250703.09

 DIP/AZIMUTH:
 90°/-

BORE No: BH105 PROJECT No: 84944.01 DATE: 10/4/2017 SHEET 1 OF 2

> **Thers** Groundwater

		Description	Degree of	U	Rock Strength	Fracture	Discontinuities	Sa	amplir	ng &	In Situ Testing
RL	Depth (m)	of	Weathering	Sraphi Log		Spacing (m)	B - Bedding J - Joint	/pe	ore c. %	۵D %	Test Results
		Strata	H M M M H M M M M M M M M M M M M M M M		EX L Med F F F H G H	0.01	S - Shear F - Fault	⊢́`	Sev	Ψ,	Comments
È	-	topsoil filling with some rootlets,		K				AVE			
-9-	- 06	damp		\mathbb{Z}				A/E			
Ē	-	SAND - grey-brown medium sand with some coarse graining, moist									
Ē	-1	(possible filling)						A/E			
ŀ											
15	- 1.5	SAND - brown to dark brown									
Ē	-	filling)									
Ē	-										
4	-										
-	2.7	SAND - light brown to orange-brown									
Ē	-3	medium sand, damp						A/E			
Ē	-						Note: Unless otherwise stated, rock is fractured				
13	-						along rough planar bedding dipping 0°- 10°				
ŧ	-										
Ē	-4 4.1	4.1m: becoming extremely		<u> </u>			h 4.1m: CORE LOSS:		<u> </u>		
Ē	4.13	SANDSTONE - medium strength,				┡╾┪╎╴╎╎	50mm 4.15-4.3m: Cs				$PL(\Lambda) = 0.5$
12	-	moderately to slightly weathered, slightly fractured, light grey-brown to					4.35m: J35°, he 4.4m: B20°, pl, ro, cln				PL(A) = 0.5
Ē	- 5	red-brown, medium grained sandstone				┊┊┢┻	4.93. 5.05 & 5.18m: B				
F	-						(x3) 0°- 5°, fe				
-+-							5.28m: J70 ⁻ , un, ro, re 5.44, 5,81, 5.86m: B (x3)		08	84	
Ē	-					╎╵┙	0°- 5°, fe, cly		90	04	PL(A) = 0.49
Ē	-6					i ri-ji	5.93m: J60° & 85°, st,				
-	-						10, 16				PI (A) = 0.31
-9						i i 🛁	6.63m; 1 (x2) 70° un ro				()
È	6.75	SANDSTONE - medium and high				┝━━┿┿┩╌┓╎╎	fe, partially he				
Ē	-7	weathered and fresh, slightly				╎╎╻	7 16m: 170° be				
F	-	grained sandstone									PI (A) = 1.31
F	-										()
Ē	-8					i ii [ii	7.82m: B0°, cly, 5mm				
Ē	-						8.12m: J30°, pl, sm, cln				
-∞	-					¦ 		с	100	91	PL(A) = 0.61
ŧ	-						8.6m: J20 ⁻ , pi, ro, cin				
F	-9										
-	-						_ 9.35m: B5°, fe, cly, 5mm				
4	-						9.45m: J25°, pl, ro, fe				PL(A) = 0.49
-	-						9.00-10.10111. US				
RI	G: Scou	t 2 DRILL	.ER: JS		LOG	GED: RM/SI	CASING: HQ	to 4.	1m		
ΤY	PE OF E	SORING: Solid flight auger (TC-bit) to 4.1m; N	IMLC	-Coring to 15.48m						

WATER OBSERVATIONS: Some seepage from 0.5m REMARKS:

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

S	SAMPLIN	G & IN SITU TESTI	NG LEC	JEND					
A Auger sample	G	Gas sample	PIC	 Photo ionisation detector (ppm) 					
B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)					
BLK Block sample	U,	Tube sample (x mm dia	a.) PL(D) Point load diametral test Is(50) (MPa	I)			26	Dai
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		11	Dudy	143	r ai
D Disturbed sample	⊳	Water seep	S	Standard penetration test		/			
E Environmental sam	ple 📱	Water level	V	Shear vane (kPa)			Geotechnics	I Enviro	onment

SURFACE LEVEL: 16.54 AHD EASTING: 338303.82 **NORTHING:** 6250703.09 **DIP/AZIMUTH:** 90°/--

BORE No: BH105 **PROJECT No: 84944.01** DATE: 10/4/2017 SHEET 2 OF 2

Γ		Description	Degree of Weathering	<u>.0</u>	Rock Strength	Fracture	Discontinuities	Sa	amplir	ng & I	n Situ Testing
Ч	Depth (m)	of	Wednering	Log		Spacing (m)	B - Bedding J - Joint	be	re %	۵°	Test Results
	(,	Strata	FIS & W A	Ū	Very I Very I Very I Ex High	0.05	S - Shear F - Fault	Ţ	Rec	R S %	& Comments
Ē	-	SANDSTONE - medium and high strength, moderately to slightly						С	100	91	PL(A) = 0.65
- 9	- - - 11 10.96	weathered and fresh, slightly fractured, light grey-brown, medium grained sandstone <i>(continued)</i> 10.35-10.66m: very low strength 10.66-10.96m: extremely low strength					10.45-10.47m: Ds 10.66-10.96m: Ds				PL(A) = 0.1
	- 12	SANDSTONE - high then medium strength, slightly weathered and fresh, slightly fractured and unbroken, light grey to light grey-brown, medium grained sandstone with some extremely low					11.7m: J25°, ,pl, ro, cln	с	100	72	PL(A) = 1.26
È	-	to very low strength bands					12.15m: J30°, pl, ro, fe,				
- 4 - 4	- 13						12.22-12.36m: Cs 12.4-12.48m: Cs 12.6m: J70°, pl, ro, cln				PL(A) = 1.06
	-						13.86m: B5°, cly, 10mm				PL(A) = 1.26
2	- 14						14.15m: B5°, cbs co	с	100	88	PL(A) = 1.03
-	- 15						14.75-14.9m: Cs				PL(A) = 0.92
	- 15.48 -	Bore discontinued at 15.48m		<u></u>							
-	- 16					 					
-0	-										
	- 17										
- -											
Ē	- 18										
ŧ											
- - -	-										
	- 19										
Ē											
F											

RIG: Scout 2

DRILLER: JS

LOGGED: RM/SI

CASING: HQ to 4.1m

TYPE OF BORING: Solid flight auger (TC-bit) to 4.1m; NMLC-Coring to 15.48m WATER OBSERVATIONS: Some seepage from 0.5m **REMARKS:**

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

CLIENT:

PROJECT:

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level A Auger sample B Bulk sample BLK Block sample G P U_x W Disturbed sample Environmental sample CDE ₽

SURFACE LEVEL: 38.47 AHD EASTING: 338318.63 NORTHING: 6250640.39 DIP/AZIMUTH: 90°/-- BORE No: BH106 PROJECT No: 84944.01 DATE: 12/4/2017 SHEET 1 OF 2

		Description	Degree of	o	Rock Fracture	Discontinuities	Sa	amplir	ng & I	In Situ Testing
RL	Depth	of	weathening	aphi od		B - Bedding J - Joint	ø	e%		Test Results
	(11)	Strata	N N N N N N N N N N N N N N N N N N N	ອ_		S - Shear F - Fault	T _Z	S S	RQ %	& Comments
E	- 0.08	_FILLING - brick pavers		\bigotimes			A			
38	- 0.3	FILLING - brown silty sand filling with some fine to medium grained sandstone gravel, moist		\bigotimes			A	-		
ŀ	_ 0.65 - 0.8	FILLING - sandstone boulder filling		Х×,			A			
Ē	- -1	FILLING - concrete slab								
ł	-	SAND - very loose, light grey medium grained sand, moist					s			1,1,1 N = 2
37	-									
Ē	-									
ł	-2									
Ē	-									
36	-									
F	-						s			1,1,2
Ē	-						Ľ			N = 3
ł	- 3									
	-									
Ē	-									
ŀ	-									
Ē	-4 4.0	SAND - loose, pale yellow medium								455
ł	-	grained sand, moist					s			N = 10
34	-							1		
Ē	-									
-	-5									
ŀ	-									
33-	- 5.5	SAND - dense, vellow medium		<u> </u>						
ŀ	-	grained sand, moist					s			2,3,3 N = 6
ŀ	-6									
ł										
32-	-									
Ē	-									
ŧ	-7									
Ē	-						s			5,10,10
3-										N - 20
Ē	-									
Ē	-									
ŧ	-									
- -	-									
-								1		6,11,15
ŧ	-						5			N = 26
Ē	-9									
ŧ.				::::						
29	-									
F										

RIG: Bobcat

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

DRILLER: GM

LOGGED: JN

CASING: HW to 8.5m; HQ to 12.45m

TYPE OF BORING: Solid flight auger (TC-bit) to 8.5m; Rotary (mud) to 12.45m; NMLC-Coring to 15.55m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 12.5m (screen 9.5-12.5m; gravel 8.5-12.5m; backfill to GL with gatic cover)

		SAMP	LIN	3 & IN SITU TESTING	LEG	END											
A	Auger sample		G	Gas sample	PID	Photo ionisation detector (ppm)											
В	Bulk sample		Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			_	-	_			_			_
BL	K Block sample		U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)	1.1								m		6
C	Core drilling		Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Dudy		\mathbf{a}			aı			_	3
D	Disturbed sample		⊳	Water seep	S	Standard penetration test			· .								
E	Environmental san	nple	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics	1	Env	/iro	nme	ent	G	roun	dwat	er
-		•				× /		000100/////00						0	oun	anat	01

SURFACE LEVEL: 38.47 AHD EASTING: 338318.63 NORTHING: 6250640.39 DIP/AZIMUTH: 90°/-- BORE No: BH106 PROJECT No: 84944.01 DATE: 12/4/2017 SHEET 2 OF 2

Γ		Description	Degree of Weathering	<u>.0</u>	Rock Strength	Fracture	Discontinuities	Sa	amplir	ng &	In Situ Testing
RL	Depth (m)	of Strata	M M W S S S S S S S S S S S S S S S S S	Graph Log	Very High Very High Kery High Very High	5pacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
	-	SAND - dense, yellow medium grained sand, moist <i>(continued)</i> 40.0m: becoming wet						s			10,17,19 N = 36
-	- - - - 11										
27	-						Note: Unless otherwise				10 14 18
-	- - - 12 -						along rough planar bedding dipping 0°- 10°	s			N = 32
56	12.45	SANDSTONE - medium then low	 								PL(A) = 0.63
-	- - - - 13	strength, slightly weathered then fresh stained, slightly fractured then unbroken, orange and light grey					12.85-13.08m: J60°-				
	-	traces of very low strength bands					he 13.08m: Ds, 20mm				PL(A) = 0.56
2	-						13.5, 13.9, 14.06m: B0°- 5°, pl, ro, cly, 1mm				
	- 14							с	100	99	
24	-						14.5m: B5°, pl, ro, fe stn				PL(A) = 0.53
	- 15 - 15										
23	-										PL(A) = 0.28
-	_ 15.55 - - - - 16	Bore discontinued at 15.55m - target depth reached									
	-										
-	-										
Ē	- 17										
21											
	-18										
20-	-										
-	- 19										
19	-										
	- -										

RIG: Bobcat

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

DRILLER: GM

LOGGED: JN

CASING: HW to 8.5m; HQ to 12.45m

TYPE OF BORING: Solid flight auger (TC-bit) to 8.5m; Rotary (mud) to 12.45m; NMLC-Coring to 15.55m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 12.5m (screen 9.5-12.5m; gravel 8.5-12.5m; backfill to GL with gatic cover)

		SAMP	LIN	G & IN SITU TESTING	LEG	END	1											
A	Auger sample		G	Gas sample	PID	Photo ionisation detector (ppm)												
В	Bulk sample		Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			Derre	_		_				L		-
BLK	K Block sample		U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test Is(50) (MPa)		1.1							rı		٥r	6
C	Core drilling		Ŵ	Water sample	pp	Pocket penetrometer (kPa)		1	Dudy			-						9
D	Disturbed sample		⊳	Water seep	S	Standard penetration test				· .								
E	Environmental sa	mple	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics	1	En	viro	onm	ient	IG	Grour	ndwa	ter

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

 SURFACE LEVEL:
 39.22 AHD

 EASTING:
 338301.69

 NORTHING:
 6250640.1

 DIP/AZIMUTH:
 90°/-

BORE No: BH107 PROJECT No: 84944.01 DATE: 13/4/2017 SHEET 1 OF 2

Γ		Description	Degree of	.u	Rock Strength	Fracture	Discontinuities	Sa	mplir	ng & I	In Situ Testing
R	Depth (m)	of	veaulening	Log		Spacing (m)	B - Bedding J - Joint	be	re .%	۵D ۵	Test Results
	(,	Strata	E S W M W W	Ū		0.05 0.100 0.	S - Shear F - Fault	Ţ	Rec	RC %	& Comments
Eo	0.05	FILLING - brick pavers		\bowtie				А			
Ē	-	FILLING - brown silty sand filling with some fine to medium sandstone		\bigotimes				А			
Ē		gravel, moist		\mathbb{X}							
E	-			\mathbb{X}				А			
F	-1 1.0 [SAND - very loose then loose, light		K ¥				_			1,1,1
Ē	-	grey medium grained sand, moist						ъ			N = 2
F											
E	-										
ŧ.	-2										
100	[
ŀ	-							_			1.1.1
E	[S			N = 2
ł.	-3										
100											
ł	-										
Ē						 					
È.	-4						Note: Unless otherwise stated, rock is fractured				235
35							along rough planar bedding dipping 0°- 10°	S			N = 8
F	-										
Ē	49							5			10/149mm
Ē.	-5	SANDSTONE - medium strength, slightly weathered, slightly fractured,									refusal
5		orange and light grey medium		$\frac{1}{7}$			5.3m: CORE LOSS:				PL(A) = 0.48
F	-	granied sandstone		X			410mm	С	58	56	
Ē	5.71			\boxtimes			5.73m: CORE LOSS:				
Ē	-6						5.91m: J45°, pl, ro, cln				
33-						i ii 🏹	6.2m: J20°, un, ro, cln				PL(A) = 0.54
E	-										
F						╎╎╧╡╎	5.8m: J30°. pl. ro. clv.				
Ē	-7						5mm 6.88m: 145°- 60° un ro				
32-							cln				
E	-						7.57.7.64m [°] 120° nl ro				
ŀ							cly, 2mm	С	100	92	PL(A) = 0.46
Ē	-8					╎╎┢╼┛╎╎	8.03-8.35m: J70°, un,				
-5	È						ro, fe stn, partially he				
E	-										PL(A) = 0.45
ŧ	È										
Ē	-9 9.05	SANDSTONF - medium strength	╎╎╎┞┿┓				8.93, 8.94m: B10°, pl, ro. clv. 1mm				
-8	ŧ	fresh, slightly fractured then					io, ory, mini				
Ē	Ę	grained sandstone with traces of						_			PL(A) = 0.48
ŧ	-	carbonaceous laminations						С	100	100	
Ł	[]										
RI	G: Bob	cat DRILL	.ER: GM		LOG	GED: JN	CASING: HW	' to 4.	.9m; I	HQ to	o 4.9m

TYPE OF BORING:Solid flight auger (TC-bit) to 4.9m;NMLC-Coring to 14.0m**WATER OBSERVATIONS:**No free groundwater observed whilst augering**REMARKS:**

	SAM	PLIN	G & IN SITU TESTING	LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	I Dolidias Partners
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	¥	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwate
	· · · ·				

 SURFACE LEVEL:
 39.22 AHD

 EASTING:
 338301.69

 NORTHING:
 6250640.1

 DIP/AZIMUTH:
 90°/-

BORE No: BH107 PROJECT No: 84944.01 DATE: 13/4/2017 SHEET 2 OF 2

Γ		Description	Degree of	<u>ں</u>	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng &	n Situ Testing
RL	Depth (m)	of Strata		Graph Log	Vate National Antiparties of the second seco	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
	-11	SANDSTONE - medium strength, fresh, slightly fractured then unbroken, light grey medium grained sandstone with traces of carbonaceous laminations (continued)					10.4m: B0°, pl, ro, cly, 1mm 10.54m: Cs, 10mm 11.37m: B5°, pl, ro, cly, 2mm 11.87m: B5°, pl, ro, fe stn	С	100	100	PL(A) = 0.5 PL(A) = 0.64
26	13							С	100	100	PL(A) = 0.49 PL(A) = 0.71
25	-	Bore discontinued at 14.0m - target depth reached									
24	- 15										
23	- 16										
22	- 17										
21	- 18										
20	- 19										

RIG: Bobcat

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

DRILLER: GM

LOGGED: JN

CASING: HW to 4.9m; HQ to 4.9m

TYPE OF BORING:Solid flight auger (TC-bit) to 4.9m;NMLC-Coring to 14.0mWATER OBSERVATIONS:No free groundwater observed whilst augeringREMARKS:

SAM	PLIN	G & IN SITU TESTING	LEG	END		
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B Bulk sample	Р	Piston sample	PL(/	A) Point load axial test Is(50) (MPa)		
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)	1.	N Dolidiae Partnere
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Budyids Fai lifeis
D Disturbed sample	⊳	Water seep	S	Standard penetration test		
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
					 _	

CLIENT:Cranbrook SchoolPROJECT:Cranbrook School ECILOCATION:New South Head Road, Bellevue Hill

BOREHOLE LOG SURFACE LEVEL: 16.28 AHD EASTING: 338412.68

NORTHING: 6250794.55 DIP/AZIMUTH: 90°/-- BORE No: BH111 PROJECT No: 84944.01 DATE: 13/4/2017 SHEET 1 OF 1

			Description	Li		Sam	npling &	& In Situ Testing	L	Well	
Ч	Dep (m	th)	of	Log	be	pth	nple	Results &	Nate	Constructio	n
			Strata	U	È	å	San	Comments		Details	
E.o	-	• •	TOPSOIL - brown medium sand filling with trace red-brown clav and rootlets	R	_A/E_	0.1 0.15				-	
-	-	0.3	FILLING - dark brown medium sand filling (possibly natural)		A/E_	0.45 0.5				-	
E	-1	0.8	FILLING - pale brown mottled dark brown, medium sand filling (possibly natural)			1.0				r - - - 1	
15						1.05				-	
	-				×	19					
14	-2				_ <u>A/E_</u>	2.0				-2	
-	- - -	2.6	SAND - pale brown and yellow, medium sand, moist							-	
ŀ	-3				A/E_	2.9 3.0				- 3	
13	-	3.1	Bore discontinued at 3.1m - target depth reached							-	
	-									-	
ŀ	-4									- 4	
-5	-									-	
-										- - -	
-	-5									-5	
	-									-	
	-6									- 6	
10	-									-	
	-									-	
-	-7									-7	
-6 -	-									-	
	-									-	
	-8									-8	
ŀ	-									- - -	
	-9									-9	
										- - -	
Ŀ	-									-	

RIG: DT100

DRILLER: SS

LOGGED: AT

CASING: Uncased

TYPE OF BORING: Auger to 3.1m WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PIL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(A) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp

 D
 Disturbed sample
 Water seep
 S
 Standard penetrometer (kPa)

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

 SURFACE LEVEL:
 16.61 AHD

 EASTING:
 338380.55

 NORTHING:
 6250730.19

 DIP/AZIMUTH:
 90°/-

BORE No: BH112 PROJECT No: 84944.01 DATE: 11/4/2017 SHEET 1 OF 1

\square	그 Depth 안 (m)		Description	. <u>ല</u>		San	npling	& In Situ Testing		Well
RL	De (r	pth n)	of	iraph Log	be	pth	nple	Results &	Wate	Construction
			Strata		ŕ	ă	Sar	Comments		Details
-			TOPSOIL - dark brown, silty clay topsoil with rootlets, dry		A/E	0.1				
16	- - -	0.4	SAND - dark brown mottled yellow-brown, fine to medium grained sand, dry to moist (possibly filling)		A	0.5				
	-1	1.0	SAND - yellow-brown mottled dark brown, fine to medium sand, dry to moist		A/E	1.0				-1
. 15 .	-		1.5m: as above but yellow-brown							
	-2	2.0	Bore discontinued at 2.0m - target depth reached	<u>[·· ː ·</u> .	A/E-	-2.0-				2
14										
	- 3									-3
13	-									
	-4									-4
12	-									
	- 5									-5
	- - -									
	- 6									-6
10	-									
	- 7									-7
6	-									
	- 8									-8
6	-									
	-9									-9
	-									
4	-									

RIG: DT100

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

DRILLER: SS

LOGGED: RW

CASING: Uncased

TYPE OF BORING: Auger to 2.0m WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water level
 V
 Shear vane (kPa)

BOREHOLE LOG Cranbrook School

Cranbrook School ECI LOCATION: New South Head Road, Bellevue Hill SURFACE LEVEL: 16.22 AHD EASTING: 338402.54 **NORTHING:** 6250814 **DIP/AZIMUTH:** 90°/--

BORE No: BH113 **PROJECT No: 84944.01** DATE: 13/4/2017 SHEET 1 OF 1

			Description	. <u>ಲ</u>		Sam	npling &	& In Situ Testing		Well	
Ч	De (n	pth n)	of	Log	be	pth	aldr	Results &	Natei	Construction	n
			Strata	U	Ţ	De	San	Comments	_	Details	
16	-	0.2	FILLING - brown, medium grained sand filling (topsoil) with some red-brown clay, traces of rootlets	\mathbb{X}	A/E_	0.1 0.15					
Ē	-		FILLING - dark brown, medium sand filling			0.5				-	
È	-	0.7	FILLING - pale brown mottled dark brown medium sand	\mathbb{X}		0.55				-	
ŀ	-1		filling		A/F	1.0				- 1	
15	-					1.05				-	
Ē	-				>					-	
ŧ	-									-	
Ē	-2				A/E	1.95 2.0				-2	
-4	-	2.3	SAND - pale brown and vellow, medium sand, moist							-	
ŧ	-									-	
Ē	-				1					-	
	-3	3.0	Bore discontinued at 3.0m	L. •	-AVE-	-3.0-				-3	
È	-		- target depth reached								
F	-									-	
Ē	-4									-4	
4	-									-	
ŀ	-									-	
Ē	-									-	
Ē	-5									-5	
-+=	-									-	
F	-									-	
Ē	-									-	
-	-6									-6	
Ē	-									-	
Ē	-									-	
Ē	- 7									-7	
-6	-										
Ē	-									-	
Ē	-									-	
ŧ	-8									-8	
	-									-	
Ē	-										
ŧ	-										
ŧ	-9									-9	
-	-									-	
Ē	-										
-	-									-	

RIG: DT100

CLIENT:

PROJECT:

DRILLER: SS

LOGGED: AT

CASING: Uncased

TYPE OF BORING: Auger to 3.0m WATER OBSERVATIONS: No free groundwater observed **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND

 LEGEND

 PID
 Photo ionisation detector (ppm)

 PL(A)
 Point load axial test Is(50) (MPa)

 PL(D)
 Point load diametral test Is(50) (MPa)

 pp
 Pocket penetrometer (kPa)

 S
 Standard penetration test

 V
 Shear vane (kPa)

 A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U, W ₽

SURFACE LEVEL: 16.40 AHD **EASTING:** 338395.64 **NORTHING:** 6250774.08 **DIP/AZIMUTH:** 90°/--

BORE No: BH114 **PROJECT No: 84944.01** DATE: 11/4/2017 SHEET 1 OF 1

			Description	<u>i</u>		Sam	pling &	& In Situ Testing	<u> </u>	Well
RL	Dep (m	oth ו)	of	Sraph Log	ype	epth	mple	Results &	Wate	Construction
Ц			Strata		-	Ō	Sa	Comments		Details
Ē		0.2	□ I OPSOIL - dark brown, fine to medium silty sand topsoil,	<u>/ //</u>	AVE	0.1				-
16	-		SAND - dark brown mottled-brown, fine to medium sand, moist (possibly filling)		A/E	0.5				- - - - -
	- 1				A/E	1.0				- 1
15	-									
ŀ	-	1.8	SAND dark brown mottled vellow brown fine to modium							
-	-2		sand with iron indurated pockets, moist		A/E	2.0				-2
14										-
Ē	- - - 3	3.0				_30_				
ŀ	-	0.0	Bore discontinued at 3.0m			0.0				
13	-									
ŀ	-									-
E	-4									-4
Ē	-									
12										-
	-									-
ŀ	- 5									-5
Ē	-									- - -
-1-	-									-
-										-
ŀ	- - 6									-6
[_									-
-9 -	-									
ŀ										-
Ē	-7									7
-	-									-
-00										-
ŀ	-									
E	- 8									-8
-	-									-
Ē										
È	-									
[-9									-9
-										
È	-									
			I					I	1	

RIG: Scout 2

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

DRILLER: JS TYPE OF BORING: Auger to 3.0m

LOGGED: RW

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND

 LEGEND

 PID
 Photo ionisation detector (ppm)

 PL(A)
 Point load axial test Is(50) (MPa)

 PL(D)
 Point load diametral test Is(50) (MPa)

 pp
 Pocket penetrometer (kPa)

 S
 Standard penetration test

 V
 Shear vane (kPa)

 A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U, W ₽

 SURFACE LEVEL:
 16.43 AHD

 EASTING:
 338384.73

 NORTHING:
 6250747.66

 DIP/AZIMUTH:
 90°/-

BORE No: BH115 PROJECT No: 84944.01 DATE: 11/4/2017 SHEET 1 OF 1

Γ		Description			Sam	Sampling & In Situ Testing			Well	
R	Depth (m)	of	Grapt	ype	epth	mple	Results &	Wate	Construction	
-		Strata TOPSOIL - dark brown, fine to medium silty sand topsoil			01	Sa			Details	
Ē	- 0.3	dry to moist			0.1					
Ę	-	SAND - grey-brown, fine to medium sand, dry to moist (possibly filling)		A/E	0.5					
F		0.8m: as above but becoming dark brown and grey-brown			10				-	
F	- ' 1.' -	SAND - pale grey, fine to medium sand, dry to moist			1.0					
- 1	-			ł						
E	-			}						
ł	-2 2.0	Bore discontinued at 2.0m	1	-A/E-	-2.0-				2	
-4 -	-	- target depth reached								
ł	-									
ł	- - 3 -								-3	
	-									
Ē	-									
ŀ	- 4								-4	
ł	-									
-5	-									
ŀ	-									
È	-5								-5	
-=										
ŀ										
ŀ	-6								-6	
-₽	-									
ŀ	-									
F	-7								-7	
Ē	-									
-00	-									
F	- 8									
F	-									
	-									
E	-									
ł	-9								-9	
-	-									
[-									
E	-								<u> </u>	

RIG: DT100

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

DRILLER: SS

LOGGED: RW

CASING: Uncased

TYPE OF BORING: Auger to 2.0m WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water level
 V
 Shard vane (kPa)

 SURFACE LEVEL:
 16.45 AHD

 EASTING:
 338357.98

 NORTHING:
 6250734.72

 DIP/AZIMUTH:
 90°/-

BORE No: BH116 PROJECT No: 84944.01 DATE: 11/4/2017 SHEET 1 OF 1

Π	_	epth m)	Description	.c		Sampling & In Situ Testing			<u> </u>	Well	
RL	Dej (n		of	Graph Log	ype	epth	mple	Results &	Wate	Construction	
-	-		Strata TOPSOIL - dark brown, fine to medium silty sand topsoil.		⊢ A/E	0.1	Sa			Details	
	-	0.3	dry to moist							-	
-9	-	0.7	SAND - dark brown and yellow-brown, fine to medium sand, dry to moist (possibly filling)		A/E	0.5				-	
-	- 1	0.1	SAND - dark grey, fine to medium sand, moist		A/E	1.0				- - - 1	
-	-				1					-	
15	-		1.5m; as above but becoming pale grey		}					-	
-	-		·······		ł					-	
-	-2	2.2			A/E	2.0				-2	
14	-		SAND - dark brown mottled brown, fine to medium sand, iron indurated, dry to moist		}					-	
-					1					- - -	
-	- 3	3.0	Bore discontinued at 3.0m		AVE-	-3.0-					
	-		- target depth reached							-	
-	-										
	- - -4									-4	
-	-									-	
12											
-	-									-	
	-5									-5 - -	
11	-									-	
-	-									-	
-	-6									- 6	
	-									-	
-										-	
	- - 7									-7	
-	-									-	
-6											
-	-									-	
	-8										
-8	-										
	-										
	-9									9	
	-										
-	-										

RIG: DT100

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

DRILLER: SS

LOGGED: RW

CASING: Uncased

TYPE OF BORING: Auger to 3.0m WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp

 D
 Disturbed sample
 Water seep
 S
 Standard penetrometer (kPa)

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

CLIENT:

PROJECT:

SURFACE LEVEL: 16.04 AHD EASTING: 338392.47 **NORTHING:** 6250837.21 **DIP/AZIMUTH:** 90°/--

BORE No: BH117 **PROJECT No: 84944.01** DATE: 13/4/2017 SHEET 1 OF 1

			Description			Sampling & In Situ Testing			5	Well	
Ч	De (epth m)	of	Brapt	ype	epth	mple	Results &	Wate	Construction	
16			Strata		<u>⊢</u> .	ă 01	Saı	Comments		Details	
È	Ę	0.2	traces of rootlets	K	_A/E_	0.15				-	
ŀ	F		FILLING - dark brown, medium sand filling	\bigotimes	_A/E_	0.45 0.5				-	
ŧ	È			\bigotimes	>	0.05				-	
12	-1				A/E	1.0				-1	
Ē	-			\bigotimes						-	
Ē	Ę				>					-	
4	-2			\bigotimes	A/F	1.95				-2	
-	È			\bigotimes		2.0				-	
Ē	F	2.5	FILLING note any and dark brown medium conditiling	\bigotimes						-	
ŀ	F		FILLING - pale grey and dark brown, medium sand mining	\bigotimes						-	
13	-3			\mathbb{X}	A/E	2.95 3.0				-3	
ł		3.2	SAND - pale grey, brown and brown, medium sand		1					- - -	
F			(possibly initig)		ł					-	
Ē	È,	4.0									
-5	-4	4.0	Bore discontinued at 4.0m							-	
ŀ	F									-	
ł										- - -	
-=	-5									-5	
Ē	-									-	
Ē	F									-	
ŧ	Ę									-	
Ę₽	-6									-6	
Ē	F									-	
Ē	F									-	
E	-7									-7	
-										-	
F	E										
Ē	F									-	
-∞	-8									-8	
ł	Ē									-	
-	È									-	
Ē	Ė,										
	-9									9	
ŧ	Ē										
ŀ	ŀ										
Ē	-										

RIG: Scout 2

₽

DRILLER: JS TYPE OF BORING: Auger to 4.0m

LOGGED: AT

CASING: Uncased

Douglas Partners

Geotechnics | Environment | Groundwater

BOREHOLE LOG Cranbrook School Cranbrook School ECI LOCATION: New South Head Road, Bellevue Hill

SURFACE LEVEL: 16.14 AHD EASTING: 338382.59 **NORTHING:** 6250811.43 **DIP/AZIMUTH:** 90°/--

BORE No: BH118 **PROJECT No: 84944.01** DATE: 13/4/2017 SHEET 1 OF 1

Π			Description	.u		San	npling &	& In Situ Testing		Well	
R	Dep (m	th	of	aphi Log	e	Ę	ple	Results &	Vater	Construction	ו
	(,	Strata	Q_	Type	Dep	Sam	Comments	>	Details	
-9-		0.2	TOPSOIL - grey-brown, medium silty sand (topsoil),	XX	A/E	0.1				-	
		0.2	FILLING - dark brown medium sand filling, traces of silt			0.15				-	
Ē		0.7				0.5				-	
ĒĒ	·1		SAND - pale brown and yellow, medium sand, moist		A/F	0.95				- 1	
-÷						1.0					
Ē					ļ					-	
ŧ		18			1					-	
	2		SAND - pale brown and brown, medium sand, moist		A/E	1.95				-2	
-4					1	2.0				-	
ŀ		2.5	Bore discontinued at 2.5m		}					-	
Ē			- target depth reached							-	
5	3									-3	
Ē										-	
Ē										-	
										-	
÷₽	4									-4	
										-	
Ē										-	
ł	5									-	
ĘĘ	5									-	
Ē										-	
ł										-	
Ē	6									-6	
19										-	
ł										-	
Ē										-	
Ē	7									-7	
Į										-	
Ē										-	
ĒĒ										-	
- ∞	8									-8	
Ē										-	
ĒĒ										-	
ŀ	0									-	
<u>[</u> ~[5									-	
ĘĘ											
Ęţ											
E										-	

RIG: DT100

CLIENT:

PROJECT:

DRILLER: SS

LOGGED: AT

CASING: Uncased

TYPE OF BORING: Auger to 2.5m WATER OBSERVATIONS: No free groundwater observed **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND

 LEGEND

 PID
 Photo ionisation detector (ppm)

 PL(A)
 Point load axial test Is(50) (MPa)

 PL(D)
 Point load diametral test Is(50) (MPa)

 pp
 Pocket penetrometer (kPa)

 S
 Standard penetration test

 V
 Shear vane (kPa)

 A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level G P U, W ₽

 SURFACE LEVEL:
 16.38 AHD

 EASTING:
 338353.07

 NORTHING:
 6250757.73

 DIP/AZIMUTH:
 90°/-

BORE No: BH119 PROJECT No: 84944.01 DATE: 10/4/2017 SHEET 1 OF 1

Γ		Description Sampling & In Situ Testing							Well	
님	Depth (m)	of	raph Log	e	oth	ple	Results &	Vater	Construction	ı
	()	Strata	Ū	Ty	Dep	San	Comments		Details	
E	- 0.2	TOPSOIL - dark brown, fine to medium silty sand topsoil,	\sum	A/E	0.1				-	
-9	- 0.6	SAND - grey-brown, fine to medium sand, dry to moist (possibly filling)		ΑÆ	0.5				-	
F	-	SAND - yellow, fine to medium sand, dry to moist								
	-1	1.0m: as above but dark brown		A/E	1.0				-1	
-	-	1.5m: as above but grey-brown mottled yellow-brown								
Ē	-	1.9m: as above but dark grey			20					
14	- 2.0	Bore discontinued at 2.0m - target depth reached		-AVE	_2.0_					
ŀ	-								-	
F	- - 3								-3	
Ē	-									
Ę	-								-	
Ē	-								-	
ŧ	-4								-4	
-5	-								-	
ł	-									
Ē	- 5								-5	
Ē	-								-	
-∓ -	-								-	
ŧ	-									
ł	-6								-6	
Ę	-									
Ē	-									
Ē	- - -7								- 7	
Ē	-									
-0	-								-	
ŧ									-	
F	- 8								-8	
	-								-	
ŧ	-									
ŧ	-									
ŧ	9 -									
	-									
Ē	- -									
Ŀ	-								-	

RIG: DT100

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

DRILLER: SS

LOGGED: RW

CASING: Uncased

TYPE OF BORING: Auger to 2.0m WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water level
 V
 Shard vane (kPa)

 SURFACE LEVEL:
 16.70 AHD

 EASTING:
 338333.04

 NORTHING:
 6250703.65

 DIP/AZIMUTH:
 90°/-

BORE No: BH120 PROJECT No: 84944.01 DATE: 11/4/2017 SHEET 1 OF 1

Γ		Description	ic	Sampling & In Situ Testing				<u> </u>	Well	
R	Dept (m)	of Oteste	Graph Log	ype	epth	ample	Results & Comments	Wate	Construction	
╞	-	Strata TOPSOIL - dark brown, fine to medium silty sand topsoil,	XX	A	0.1	Se				
Ē	- C	² dry to moist							-	
- 4	2 2- C	(possibly filling)		А	0.5				-	
Ē	-1	SAND - dark brown and yellow-brown, fine to medium sand, iron indurated, dry to moist		А	1.0				[_1	
Ē	-									
	-			E	1.5				-	
È	-2 2	0			-20-					
È		Bore discontinued at 2.0m - target depth reached			2.0					
Ē.	-									
-										
Ē	-3									
Ē										
-6	2-									
ŀ	-4								-4	
ŧ									-	
-6	- - -									
Ē	-5								- - 5 -	
Ē									-	
-÷	-								-	
E	6								6	
ŀ	-									
									-	
Ē	-7								- 7	
È	-								- - -	
ŧ										
-σ. -										
Ē	-8									
Ē	E									
	[
E	-9								9	
ŀ	-									
	-									
Ŀ	F									

RIG: Scout 2 DRILLEI

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

DRILLER: JS

LOGGED: RW

CASING: Uncased

TYPE OF BORING: Auger to 2.0m WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water level
 V
 Shadra vane (kPa)

SURFACE LEVEL: 16.11 AHD EASTING: 338357.75 NORTHING: 6250821.77 DIP/AZIMUTH: 90°/--

BORE No: BH121 PROJECT No: 84944.01 DATE: 12/4/2017 SHEET 1 OF 1

			Description	<u>ں</u>	Sampling & In Situ Testing					Well	
Ч	Dep (m)	th)	of	raph Log	be	pth	nple	Results &	Nate	Construction	
		,	Strata	U	Ty	De	San	Comments	Ĺ	Details	
-9		0.2	TOPSOIL - dark brown, fine to medium silty sand topsoil, \dry to moist	KK	ΑÆ	0.1				-	
		. 75	FILLING - yellow-brown fine to medium sand filling, dry to moist		A/E	0.5				-	
15	-1	1.75	SAND - yellow-brown and grey-brown mottled dark brown, fine to medium sand, dry to moist (possibly filling)		A/E	1.0				- - - 1 -	
										- - - -	
	-2				A/E	2.0				-2	
		2.2	SAND - yellow-brown, fine to medium sand, dry to moist							- - - -	
										- - - -	
- <u>6</u> -	-3	3.0	Bore discontinued at 3.0m	· · · ·	-A/E-	-3.0-				3	
			- target depth reached								
	-4									- 4	
-2-										-	
ŀ											
-=	- 5									-5	
										-	
	-6									-6	
-2										- - -	
-0	-7									-7	
										-	
										-	
	-8									-8	
										- - -	
ŀ											
	-9									-9	
-											

RIG: DT100

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

DRILLER: SS

LOGGED: RW

CASING: Uncased

TYPE OF BORING: Auger to 3.0m WATER OBSERVATIONS: No free groundwater observed REMARKS:

SAMPLING & IN SITU TESTING LEGEND											
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)							
B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)							
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)							
C Core drilling	w	Water sample	рр	Pocket penetrometer (kPa)							
D Disturbed sample	⊳	Water seep	S	Standard penetration test							
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)							

 SURFACE LEVEL:
 16.22 AHD

 EASTING:
 338349.17

 NORTHING:
 6250799.56

 DIP/AZIMUTH:
 90°/-

BORE No: BH122 PROJECT No: 84944.01 DATE: 11/4/2017 SHEET 1 OF 1

Π			Description	. <u>ಲ</u>	Sampling & In Situ Testing					Well
RL	Dep (n	oth า)	of Strata	Graph Log	Type	Depth	sample	Results & Comments	Wate	Construction Details
16			FILLING - dark brown, fine to medium silty sand filling, dry to moist		A/E	0.1	05			
	- - -	0.3	SAND - dark brown mottled grey, fine to medium sand, dry to moist (possibly filling)		A/E	0.5				
	- - - 1	10			A/E	1.0				-1
1 1.	-	1.2	SAND - yellow-brown, fine to medium sand, dry to moist							
	-	2.0				20-			-	
14	- 2	2.0	Bore discontinued at 2.0m - target depth reached		AL	2.0			-	
13	- 3									-3
-										
12	-4									-4
-	- - - - 5									-5
10	-6									-6
-	- 7									7
. 6	- - - -									
8	- 8									8
-	- - -									
	-9									9
-	-									

RIG: DT100

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

DRILLER: SS

LOGGED: RW

CASING: Uncased

TYPE OF BORING: Auger to 2.0m WATER OBSERVATIONS: No free groundwater observed REMARKS:

SAMPLING & IN SITU TESTING LEGEND												
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)								
B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)								
BLK Block sample	Ux	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)								
C Core drilling	W	Water sample	pp	Pocket penetrometer (kPa)								
D Disturbed sample	⊳	Water seep	S	Standard penetration test								
E Environmental sample	¥	Water level	V	Shear vane (kPa)								

SURFACE LEVEL: 16.31 AHD BORE No: BH123 EASTING: 338341.92 NORTHING: 6250774.57 DIP/AZIMUTH: 90°/--

PROJECT No: 84944.01 DATE: 11/4/2017 SHEET 1 OF 1

Γ		Description	. <u>e</u>		San	npling &	& In Situ Testing	_	Well	
RL	Depth (m)	of	Log	,pe	pth	nple	Results &	Wate	Construction	
		Strata		Ê	De	San	Comments		Details	
-	- 0.2	TOPSOIL - dark brown, fine to medium silty sand topsoil, \dry to moist	<u> </u>	A/E	0.1					
Ē	-	SAND - grey-brown, fine to medium sand, dry to moist (possibly filling)		A/E	0.5					
F		SAND - dark brown, fine to medium sand, iron indurated,			10					
È	-1			AVE	1.0					
-15	-			}						
	-	SAND - yellow-brown, fine to medium sand, dry to moist								
F	-2 2.0	Bore discontinued at 2.0m	<u></u>	-AVE-	-2.0-				2	
-4		- target depth reached								
ŀ	-								-	
Ē	Ę								-	
ŧ	-3								-3	
-6	-								-	
Ē	[
Ē	-4								-4	
F.	- '									
Ę	[
ŧ										
ł	-5								-5	
==	-									
ŧ	-									
ł	-								-	
Ē	-6								6	
÷5	-									
F	-									
Ē										
ŧ	-7								-7	
-0	-								-	
Ē										
ŀ	-								-	
F	-									
	Ę									
ŧ	ŀ								t l	
F	-9								-9	
-	ļ									
ŀ	ł								ŧ l	
Ē	-									
Ł	ŀ								<u> </u>	

RIG: DT100

DRILLER: SS

LOGGED: RW

CASING: Uncased

TYPE OF BORING: Auger to 2.0m WATER OBSERVATIONS: No free groundwater observed **REMARKS:**

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

CLIENT:

PROJECT:

SAMPLING & IN SITU TESTING LEGEND												
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)								
B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)								
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)								
C Core drilling	W	Water sample	pp	Pocket penetrometer (kPa)								
D Disturbed sample	⊳	Water seep	S	Standard penetration test								
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)								

SURFACE LEVEL: 16.51 AHD EASTING: 338327.48 NORTHING: 6250748.48 DIP/AZIMUTH: 90°/-- BORE No: BH124 PROJECT No: 84944.01 DATE: 10/4/2017 SHEET 1 OF 1

Γ		Description	. <u>0</u>	ي Sampling & In Situ Testing پ						
R	Depth (m)	of	iraph Log	be	pth	nple	Results &	Wate	Construction	
		Strata	0	È	De	San	Comments	_	Details	
ŀ	- 0.3	TOPSOIL - dark brown, fine to medium silty sand topsoil, dry to moist	<u> </u>	A	0.1					
19	-	SAND - grey-brown, fine to medium sand, dry to moist (possible filling)		A/E	0.5					
-	0.75 -1	SAND - grey-brown mottled yellow-brown, fine to medium sand with occasional dark brown pockets of iron indurated sand, dry to moist		A	1.0				1	
15	-			•						
ŧ	-2 2.0	Pero discontinued at 2.0m		A/E-	-2.0-				2	
12 12 12 12 12 12 12 12 12 12 12 12 12 1		- target deptil reached							3 4 5	
11 10 10 10 10 10 10 10 10 10 10 10 10 1	-6								6 7 8	
	- 9 								9	

RIG: DT100

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

DRILLER: SS

LOGGED: RW

CASING: Uncased

TYPE OF BORING: Auger to 2.0m WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water level
 V
 Shear vane (kPa)

 SURFACE LEVEL:
 16.50 AHD

 EASTING:
 338319.11

 NORTHING:
 6250727.97

 DIP/AZIMUTH:
 90°/-

BORE No: BH125 PROJECT No: 84944.01 DATE: 10/4/2017 SHEET 1 OF 1

		Description	.cj	Sampling & In Sit			& In Situ Testing	L.	Well	
R	Depth (m)	of	Sraph Log	ype	epth	mple	Results &	Wate	Construction	
F	-	Strata TOPSOIL - dark brown, fine to medium silty sand topsoil	7	í A	0 1	Sa	Commenta	+	Details	
ł	- 0.2	dry to moist			0.1				-	
-16	- 0.7	dry to moist (possibly filling)		A	0.5				-	
	- 1	SAND - grey mottled yellow-brown, fine to medium sand, dry to moist		A/E	1.0				- - -1	
ŀ	- - -	1.2m: as above but yellow-brown mottled brown								
12	- -									
ŀ										
ŀ	-2 2.0	Bore discontinued at 2.0m		-AVE-	-2.0-				-	
-4										
ŀ	-									
ł	-3								-3	
13	-								-	
	- -									
ŀ	-4								-4	
	- -									
Ę	-									
ł	-5								5	
ł	-									
-=	- -								-	
	-6								-6	
ŀ	-									
-9 -	- -									
ŀ	-								-	
[
-6	-									
ŀ	-									
ŀ	-8								-8	
	- -									
	- - -									
ŀ	-9								-9	
-	-									
	-									
-	-								F	

RIG: DT100

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

DRILLER: SS

LOGGED: RW

CASING: Uncased

TYPE OF BORING: Auger to 2.0m WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water level
 V
 Shadra vane (kPa)

 SURFACE LEVEL:
 16.10 AHD

 EASTING:
 338357.72

 NORTHING:
 6250849.98

 DIP/AZIMUTH:
 90°/-

BORE No: BH126 PROJECT No: 84944.01 DATE: 12/4/2017 SHEET 1 OF 1

Π		Description	υ		San	npling &	& In Situ Testing		Well
R	Depth	of	aphi -og	e	Ę	ple	Poculte &	/ater	Construction
	(11)	Strata	9	Typ	Dep	Sam	Comments	5	Details
-9	0.3	TOPSOIL - dark brown, fine to medium silty sand topsoil, trace gravel, dry to moist	M	A/E	0.1				-
	0.0	FILLING - yellow brown, fine to medium sand filling, dry to moist		A/E	0.5				
	- 1			A/E	1.0				- 1
		1.3m: as above but grey-brown		> > >					
-4-	-2			A/E	2.0				-2
		2.4m: as above but becoming grey-brown and dark brown							
13	- 3			A/E	3.0				-3
	3.4	SAND - yellow-brown, fine to medium sand, moist							- - - -
	4 4.0	Dans discontinued at 4 One		—A—	-4.0-				4
		- target depth reached							-
ŧ									-
									-
È_È	-5								-5
									-
ĒĒ									
									-
	-6								6
[-
ĒĒ									
									-
Ē	-7								-7
									-
Ē									
ŀ	-8								-8
Ē									
									-
ŧ,ŧ	-9								-9
Ē									
<u> </u>									
ĒĒ									
Ŀ									

RIG: DT100

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

DRILLER: SS

LOGGED: RW

CASING: Uncased

TYPE OF BORING: Auger to 4.0m WATER OBSERVATIONS: No free groundwater observed REMARKS:

	SAMPLING & IN SITU TESTING LEGEND												
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)								
В	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)								
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(C	D) Point load diametral test Is(50) (MPa)								
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)								
D	Disturbed sample	⊳	Water seep	S	Standard penetration test								
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)								

 SURFACE LEVEL:
 16.07 AHD

 EASTING:
 338330.67

 NORTHING:
 6250807.63

 DIP/AZIMUTH:
 90°/-

BORE No: BH127 PROJECT No: 84944.01 DATE: 11/4/2017 SHEET 1 OF 1

	_	Description		ic	Sampling & In Situ Testing				5	Well
RL	Dept (m)	th)	of	Graph Log	Type	bepth	ample	Results & Comments	Wate	Construction
16	-		TOPSOIL - dark brown, fine to medium silty sand topsoil,	\mathcal{N}	AVE	0.1	s,			
	-	0.3	dry to moist SAND - dark brown mottled yellow-brown, fine to medium sand with iron indurated pockets, dry to moist (possibly		A/E	0.5				
15	- - 1 -	1.2	nnng)		A/E	1.0				-1
	- - - -		SAND - yellow-brown, fine to medium sand, moist							- - - - -
. 4	-2	2.0	Para discontinued at 2.0m		AVE-	-2.0-				2
	- - - - -		- target depth reached							
	-3									-3
12	- 4									-4
	- 5									
	- - - -									
10	- 6									
6 6 	-7									-7
	- 8									
	- 9									-9
-	-									

RIG: DT100

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

DRILLER: SS

LOGGED: RW

CASING: Uncased

TYPE OF BORING: Auger to 2.0m WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water level
 V
 Shadra vane (kPa)

 SURFACE LEVEL:
 15.95 AHD

 EASTING:
 338327.14

 NORTHING:
 6250830.2

 DIP/AZIMUTH:
 90°/-

BORE No: BH128 PROJECT No: 84944.01 DATE: 12/4/2017 SHEET 1 OF 1

	_		Description	ici		Sam	npling	& In Situ Testing	<u> </u>	Well	
RL	De (I	epth m)	of Strata	Graph Log	Type	Depth	ample	Results & Comments	Wate	Construction Details	
-	-		TOPSOIL - dark brown, fine to medium silty sand topsoil,	M	A/E	0.1	S			-	
-	-	0.3	FILLING - yellow-brown mottled dark brown, fine to medium sand filling, dry to moist		A/E	0.5				- - - -	
15.	- - -1 -				A/E	1.0				-1	
-	-	1.4	SAND - mottled yellow-brown, dark brown and grey-brown, fine to medium sand, dry to moist (possibly filling)								
-1-	-2	2.2			A/E	2.0				-2	
-	-		SAND - yellow-brown, fine to medium grained sand, dry to moist							-	
13	- - 3	3.0	Para diagontinuad at 2.0m		-A/E-	-3.0-					
-	-		- target depth reached							-	
12	-										
-	-4									- 4 	
-	-									-	
	- 5									-5	
	-									-	
10	-6										
-	-									-	
										7	
-	-										
-	-									-	
	- 8									-8	
-	-										
	-9									-9	
-	-									- - - -	
	-									- - -	
-	-									-	

RIG: DT100

DRILLER: SS

LOGGED: RW

CASING: Uncased

TYPE OF BORING: Auger to 3.0m WATER OBSERVATIONS: No free groundwater observed REMARKS:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

CLIENT: PROJECT:

SAM	SAMPLING & IN SITU TESTING LEGEND												
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)									
B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)									
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)									
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)									
D Disturbed sample	⊳	Water seep	S	Standard penetration test									
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)									

 SURFACE LEVEL:
 16.35 AHD

 EASTING:
 338293.77

 NORTHING:
 6250744.3

 DIP/AZIMUTH:
 90°/-

BORE No: BH129 PROJECT No: 84944.01 DATE: 10/4/2017 SHEET 1 OF 1

			Description	ic		San	npling	& In Situ Testing	5	Well
RL	De (r	pth n)	of Strata	Grapt Log	Type	Depth	ample	Results & Comments	Wate	Construction Details
	-		TOPSOIL - dark brown, fine to medium silty sand topsoil, dry to moist	M	A/E	0.1	S S			
16	-	0.3	SAND - grey-dark brown, fine to medium sand, dry to moist (possibly filling)		A/E	0.5				
-	-1	1.2			A/E	1.0				1
15	-	1.2	SAND - mottled grey-brown and yellow-brown sand with pockets of iron induration, moist							
-	-2				A/E	2.0				-2
-14	- - -		2.5m; co. obcyce był grow brown							-
-	-3		2.5m. as above but grey-blown		A	3.0				-3
13	-	35								
-	-	0.0	SAND - yellow-brown, fine to medium sand with clay, wet 3.9m: as above but pale-grey							
12	-4	4.0	Bore discontinued at 4.0m - target depth reached		—A—	-4.0-				- 4 - - - -
-	-									
	-5									-5
-	-									
-	-6									
-9-	-									
-	-7									7
-6	-									-
-	-8									
	- - -									
-	-9									-9
	-									
-										
Ł	L							1		

RIG: DT100

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

DRILLER: SS

LOGGED: RW

CASING: Uncased

TYPE OF BORING: Auger to 4.0m WATER OBSERVATIONS: No free groundwater observed REMARKS:

SAMPLING & IN SITU TESTING LEGEND													
A Auger sample G Gas sample PID Pho	oto ionisation detector (ppm)												
B Bulk sample P Piston sample PL(A) Poi	int load axial test Is(50) (MPa)												
BLK Block sample U _x Tube sample (x mm dia.) PL(D) Poi	int load diametral test Is(50) (MPa)												
C Core drilling W Water sample pp Poe	cket penetrometer (kPa)												
D Disturbed sample ▷ Water seep S Sta	indard penetration test												
E Environmental sample F Water level V She	ear vane (kPa)												

SURFACE LEVEL: 16.44 AHD EASTING: 338282.32 NORTHING: 6250716.51 DIP/AZIMUTH: 90°/-- BORE No: BH130 PROJECT No: 84944.01 DATE: 10/4/2017 SHEET 1 OF 1

_				-						.
			Description	. <u>e</u>		San	npling	& In Situ Testing	<u> </u>	Well
님	De	epth	of	aph	e	ţ	ple	Poculte &	/ate	Construction
	(1	,	Strata	ତ	Typ	Dep	Sam	Comments	5	Details
F	-		TOPSOIL - dark brown, fine to medium silty sand topsoil,	X	A/E	0.1	0,			-
Ł	-	0.2	dry to moist							
-9	-		SAND - yellow-brown mottled dark brown, fine to medium		A	0.5				-
ŧ	E		sand, dry to moist (possible filling)							E
ŧ	-1				A/F	10				-1
E			1.0m: as above but dark brown							
20	-	1.3	SAND - yellow-brown and grey-brown, fine to medium							
Ē	F		sand with clay, wet							
ŧ	E									E
ŧ	-2	2.0	Bore discontinued at 2 0m	· · · ·	-AVE-	-2.0-				2
Ē	-		- target depth reached							
-4	-									
ŧ	-									
ŧ										
ŧ										
Ē	-									-
Ę	-									
ŧ	F									
ŧ	-4									-4
ŧ										
Ę₽	-									-
E	-									
ŧ	-									
ŧ	-5									-5
ŧ_	[
F÷	-									-
E	-									
Ł	-6									-6
ŧ	F									
Ę.	[[
F	-									
E	-									
ŧ	-7									-7
ŧ	E									[
-00										
E	-									-
Ł	-8									-8
ŧ	F									
F∞	Ē									[
ŧ	ŀ									Ł I
Ē	ļ									ţ l
E	-9									-9
ŧ	-									ŧ l
<u></u> ⊧~	Ē									E l
ŧ	[
Ē	-									<u>F</u>

RIG: DT100

CLIENT:

PROJECT:

Cranbrook School

Cranbrook School ECI

LOCATION: New South Head Road, Bellevue Hill

DRILLER: SS

LOGGED: RW

CASING: Uncased

TYPE OF BORING: Auger to 2.0m WATER OBSERVATIONS: No free groundwater observed REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 P
 Water level
 V
 Shadra vane (kPa)

SURFACE LEVEL: 16.10 AHD EASTING:

NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 2 PROJECT No: 84944 DATE: 7/7/2015 SHEET 1 OF 2

		Description	Degree of	Rock Strongth	Fracture	Discontinuities	Sa	amplir	ng &	n Situ Testing
뉟	Depth	of			Spacing (m)	B - Bedding J - Joint	e	e%	0	Test Results
	(11)	Strata	G G		0.05 0.05 0.05 0.00 1.00 0.05 0.00 0.00	S - Shear F - Fault	Ţ	Col Rec.	as 8	& Comments
-16	0.15	TOPSOIL - dark brown, silty sand								
ŧ	-	FILLING - poorly compacted, dark		\widehat{A}						
Ē		brown and light grey-brown mottled, silty sand damp								
ŧ	-	oncy band, damp								
-12	-1									1,0,1
ŧ	-									N = 1
Ē										
ŧ										
Ę₹	-2			\widehat{A}			E			
ŧ	-									
Ē							6			0,0,1
ŀ							3			N = 1
Ę₽	-3						E			
ŧ	-			×						
Ē										
ŧ	-									
Ę₽	-4							1		1,1,1
ŧ	-									N = 2
Ē										
ŧ	4.85	SAND - light vellow-brown, medium								
Ę÷	-5	grained sand, damp					E			
ŧ	-									
Ē										
ŧ	-									
Ę6	-6									
ŧ	-									
Ē										
ŧ	-									
5	-7									
ŧ	-									
Ē										
ł	-									
	-8									
ŧ										
Ē										
ŧ										
Fr	-9									
ŧ										
Ē	[
Ł										

RIG: Bobcat

CLIENT:

PROJECT:

Cranbrook School

LOCATION: Victoria Road, Bellevue Hill

Stage 1 Development

DRILLER: SY

LOGGED: MP/SI

CASING: HQ to 9.5m

TYPE OF BORING:Solid flight auger to 9.5m;Rotary to 11.25m;NMLC-Coring to 14.3mWATER OBSERVATIONS:No free groundwater observed whilst augeringREMARKS:

	SAM	PLIN	G & IN SITU TESTING	LEG	END		
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
	B Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)		
	BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)	1.1	I DAHAISE BSTRAR
	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
	D Disturbed sample	⊳	Water seep	S	Standard penetration test		
	E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwate
-							

SURFACE LEVEL: 16.10 AHD EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 2 PROJECT No: 84944 DATE: 7/7/2015 SHEET 2 OF 2

_											
		Description Degree of Strength Fractu				Fracture	Discontinuities	Sa	ampli	ng &	In Situ Testing
Ъ	Depth (m)	of	Weddilening	Log		g Spacing (m)	B - Bedding J - Joint	e	e.%	0	Test Results
	(,	Strata	H M M M M M M M M M M M M M M M M M M M	ū		0.10 0.105 0.50 0.50	S - Shear F - Fault	μ	ပိုင်္ဂ	R8%	& Comments
9	- - - - - 10.85 - - 11	SAND - light yellow-brown, medium grained sand, damp <i>(continued)</i> SILTY CLAY - light grey, silty clay					Note: Unless otherwise stated, rock is fractured along rough planar bedding dipping 0°- 10°				
· · · · · · · · · · · · · · · · · · ·	11.25 	SANDSTONE - medium and medium to high strength, moderately weathered then fresh, slightly fractured and unbroken, red-brown then light grey-brown, medium grained sandstone with some very low strength bands					12.34-12.37m: Cs				PL(A) = 0.5
	- 13						12.58-12.60m: fg	с	100	86	PL(A) = 1.2
-~~	- 14	13.85-14.15m: very low strength siltstone bands					13.83m: J65°, un, ro, cly				
Ē	14.3	Bore discontinued at 14.3m	<u> </u>				14.11. B3 , cly co 14.15m: J30°, pl, sm, cly				PL(A) = 0.4
	- 15 - 15 - 16										
-	- 17										
	- 18 										

RIG: Bobcat

CLIENT:

PROJECT:

Cranbrook School

LOCATION: Victoria Road, Bellevue Hill

Stage 1 Development

DRILLER: SY

LOGGED: MP/SI

CASING: HQ to 9.5m

 TYPE OF BORING:
 Solid flight auger to 9.5m; Rotary to 11.25m; NMLC-Coring to 14.3m

 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

 REMARKS:
 No free groundwater observed whilst augering

	SAM	PLIN	G & IN SITU TESTING	LEG	END			
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			
	B Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			-
	BLK Block sample	U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test Is(50) (MPa)		LININIAS Partner	-6
	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Budyias rai liici	
	D Disturbed sample	⊳	Water seep	S	Standard penetration test			
	E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwa	te
-						 		

SURFACE LEVEL: 16.35 AHD EASTING:

NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 4 PROJECT No: 84944 DATE: 3/7/2015 SHEET 1 OF 3

Γ		Description	Degree of	Rock Strongth	Fracture	Discontinuities	Sampling &	In Situ Testing
님	Depth (m)	of			Spacing (m)	B - Bedding J - Joint	e e%Q	Test Results
	(,	Strata	M M M M M M M M M M M M M M M M M M M	Ex Lov Low L Mediu Very High	0.01 0.10 0.50	S - Shear F - Fault	Rec 1	Comments
16	- 0.6	TOPSOIL - dark brown, silty sand topsoil with trace rootlets, damp					E	
	- - - 1 -	FILLING - dark brown and grey-brown, silty sand filling, damp						223
	-2	- becoming slightly silty and					E	N = 5
14	-	yellow-brown mottled below 2.0m					s	3,4,4 N = 8
13 1 1	-3							
12	-4	4.0-4.5m: trace organic material					E S	1,2,3 N = 5
-	- 4.5 5	SILTY SAND - brown and brown-grey, fine to medium grained sand, damp		→ ·				
	-							
6	-7 7.0	SAND - yellow-brown, medium grained sand, damp						
8	-8							
-	- 9							
	-							

RIG: Bobcat

CLIENT:

PROJECT:

Cranbrook School

LOCATION: Victoria Road, Bellevue Hill

Stage 1 Development

DRILLER: SY

LOGGED: MP/SI

CASING: HW to 11.5m

TYPE OF BORING: Solid flight auger to 9.5m; Rotary to 18.0m; NMLC-Coring to 21.1m WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS:

	SAM	PLIN	G & IN SITU TESTING	LEG	END		
	A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
	B Bulk sample	Р	Piston sample	PL(/	A) Point load axial test Is(50) (MPa)		
	BLK Block sample	U,	Tube sample (x mm dia.)	PL(!	D) Point load diametral test Is(50) (MPa)		l liniidiae Partnere
	C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)		
	D Disturbed sample	⊳	Water seep	S	Standard penetration test		U
	E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Environment Groundwater
-						 _	

CLIENT:

PROJECT:

Cranbrook School

LOCATION: Victoria Road, Bellevue Hill

Stage 1 Development

SURFACE LEVEL: 16.35 AHD EASTING:

NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 4 PROJECT No: 84944 DATE: 3/7/2015 SHEET 2 OF 3

		D	Degree of		Rock	Fronturo	Discontinuition	6	molir	20.8	In Situ Tooting
	Depth	Description	Weathering	phic bhic	Strength	Spacing	Discontinuities		ampin v	ιyα	Test Results
ľ	(m)	01 Strata		Grai	V High	(m) ۵۰۰ ۵۵	B - Bedding J - Joint S - Shear F - Fault	Lype	Core ec. 9	gg%	&
-			N N N N N N N N N N N N N N N N N N N			0.0			ς κ	-	Comments
È		grained sand, damp (continued)									
-9	_										
Ē	-										
E	-										
ł	- 11										
-9											
Ē	-										
Ł	-										
ŧ	-12										
È.	-										
Ē	-										
ł	-										
ŧ	-13										
F	-										
-0	-										
ŧ					\cdot						
ŧ	-										
E	- 14										
-~	-										
ŧ											
Ē	-										
E	- - 15										
ŧ											
	_										
Ē	-										
E	-										
ŧ	- 16					· · · · · ·					
-0	-										
E	-										
ŀ	- 16.8	SILTY CLAY - light grey silty clay		<u>;;;;</u>							
ŧ	-17			Υŀ		I II II I II II	Note: Unless otherwise				
-	-			Υŀ			stated, rock is fractured				
[-			Υŀ			bedding dipping 0°- 10°				
ŧ				Ľ							
Ē	- 17.9 - 18 18 04	SANDSTONE - very low strength,		K.L.		╷ ╷╷ ╷╷ └──┴┼ <mark>┛</mark> ┼┼──					
E	-	light grey-brown, fine to medium									
-9		SANDSTONE - low and medium					18.27 & 18.46m: B (x2) 5°- 10° cly yn ti				PI(A) = 0.5
Ē		strength, highly to moderately then					o .o, o.y, a				1 E(A) = 0.5
E	-	red-brown then light brown, medium						~	100	01	
ŧ	-19	grained sandstone with some very low strength bands						C	100	91	
Ļώ							19.2m: B10°, fe, cly				
Ē	:		│ │ ┖╌ ┓╎ │				19.5-19.55m: Cs				PL(A) = 0.2
ŧ											
Ł											
RI	G: Bobc	at DRILL	ER: SY		LOGO	GED: MP/SI	CASING: HW	' to 1	1.5m		
тγ		ROPINC: Solid flight auger to 9 5m	· Dotony to	18 0	m: NMI C_Coring t	o 21 1m					

WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS:

	SAMP	LIN	G & IN SITU TESTING	3 LEG	END			
A Auger sample		G	Gas sample	PID	Photo ionisation detector (ppm)			
B Bulk sample		Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			
BLK Block sample		U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)			
C Core drilling		Ŵ	Water sample	pp	Pocket penetrometer (kPa)		Dugias	,
D Disturbed sam	nple	⊳	Water seep	S	Standard penetration test	/		
E Environmental	İsample	Ŧ	Water level	V	Shear vane (kPa)		Geotechnics Envi	ro

SURFACE LEVEL: 16.35 AHD EASTING:

NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 4 PROJECT No: 84944 DATE: 3/7/2015 SHEET 3 OF 3

1 1		Description	Weatherin	l g i≧	Strength	Fracture	Discontinuities	Sa	amplii	ng & l	n Situ Testing
ᆋ	(m)	of				(m)	B - Bedding J - Joint	be	ere %	g ,	Test Results
		Strata	ESW MW EN	θE		0.05 0.10 1.00	S - Shear F - Fault	Ì₽	с я	8	∝ Comments
	-21	SANDSTONE - low and medium strength, highly to moderately then slightly weathered, slightly fractured, red-brown then light brown, medium grained sandstone with some very low strength bands <i>(continued)</i>					20.2m: B10°, cly vn, ti 20.45m: J70°, pl, ro, fe, cly 20.82m: B0°, cly	с	100	91	PL(A) = 0.5
E	21.1	Bore discontinued at 21.1m	╎╷╷╷╹ ╎		<mark>┦╶╷╶╷╹</mark> ╎╴╎╴┤ ╷╷╷╷╷╷╷╷						FL(A) = 0.4
ŧE	- 22										
	-23										
	-24										
	-25										
	-26										
	- 27										
	-28										
	-29										

RIG: Bobcat

CLIENT:

PROJECT:

Cranbrook School

LOCATION: Victoria Road, Bellevue Hill

Stage 1 Development

DRILLER: SY

LOGGED: MP/SI

CASING: HW to 11.5m

TYPE OF BORING: Solid flight auger to 9.5m; Rotary to 18.0m; NMLC-Coring to 21.1m WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS:

Γ	SAM	PLIN	G & IN SITU TESTING	G LEGEND	
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	
B	LK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S Standard penetration test	
E	Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwater
	· · · ·				

Current and Previous Laboratory Test Results

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 229219

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Joel James-Hall, Peter Oitmaa
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	84944.02, Cranbrook School In-Situ Assessment
Number of Samples	26 Soil
Date samples received	24/10/2019
Date completed instructions received	24/10/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 29/10/2019

 Date of Issue
 29/10/2019

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Aida Marner Authorised by Asbestos Approved Signatory: Lucy Zhu <u>Results Approved By</u> Diego Bigolin, Team Leader, Inorganics Authorised By

Nancy Zhang, Laboratory Manager

Diego Bigolin, Team Leader, Inorganics Josh Williams, Chemist Loren Bardwell, Senior Chemist Lucy Zhu, Senior Asbestos Analyst Priya Samarawickrama, Senior Chemist Steven Luong, Organics Supervisor

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		229219-1	229219-2	229219-3	229219-4	229219-5
Your Reference	UNITS	TP1/0-0.3	TP2/0.4-0.5	TP3/0.4-0.5	TP4/0.4-0.5	TP8/1.6-1.8
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	77	71	82	86	81
vTRH(C6-C10)/BTEXN in Soil						
Our Reference		229219-6	229219-7	229219-8	229219-9	229219-10
Your Reference	UNITS	TP8/4.6-4.8	TP9/0-0.3	TP10/0-0.3	TP11/0-0.3	TP11/1.8-1.0
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1

mg/kg

%

<3

73

<3

84

<3

72

<3

70

Total +ve Xylenes

Surrogate aaa-Trifluorotoluene

<3

88

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		229219-11	229219-12	229219-13	229219-14	229219-15
Your Reference	UNITS	TP12/1.6-1.8	TP12/3.6-3.8	TP13/0-0.3	TP13/2.8-3.0	TP14/0.4-0.5
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	67	86	88	65	85
vTRH(C6-C10)/BTEXN in Soil						
Our Reference		229219-16	229219-17	229219-18	229219-19	229219-20
Your Reference	UNITS	TP15/0.4-0.6	TP16/0.4-0.6	TP17/0-0.3	TP17/0.4-0.5	TP18/0.4-0.5
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1

<1

<3

83

<1

<3

77

<1

<3

87

<1

<3

87

mg/kg

mg/kg

%

naphthalene

Total +ve Xylenes

Surrogate aaa-Trifluorotoluene

<1

<3

89

vTRH(C6-C10)/BTEXN in Soil					
Our Reference		229219-21	229219-22	229219-23	229219-24
Your Reference	UNITS	TP23/0-0.3	TP23/0.4-0.6	BD1/20191023	BD2/20191023
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	76	87	86	80

svTRH (C10-C40) in Soil						
Our Reference		229219-1	229219-2	229219-3	229219-4	229219-5
Your Reference	UNITS	TP1/0-0.3	TP2/0.4-0.5	TP3/0.4-0.5	TP4/0.4-0.5	TP8/1.6-1.8
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	101	99	98	99	96

svTRH (C10-C40) in Soil						
Our Reference		229219-6	229219-7	229219-8	229219-9	229219-10
Your Reference	UNITS	TP8/4.6-4.8	TP9/0-0.3	TP10/0-0.3	TP11/0-0.3	TP11/1.8-1.0
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	98	103	118	98	97

svTRH (C10-C40) in Soil						
Our Reference		229219-11	229219-12	229219-13	229219-14	229219-15
Your Reference	UNITS	TP12/1.6-1.8	TP12/3.6-3.8	TP13/0-0.3	TP13/2.8-3.0	TP14/0.4-0.5
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	97	96	99	112	97
syTPH (C10 C10) in Soil						

SVII(II (CI0-C40) III SOII						
Our Reference		229219-16	229219-17	229219-18	229219-19	229219-20
Your Reference	UNITS	TP15/0.4-0.6	TP16/0.4-0.6	TP17/0-0.3	TP17/0.4-0.5	TP18/0.4-0.5
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	28/10/2019	28/10/2019	29/10/2019	29/10/2019	29/10/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	98	97	100	99	98

svTRH (C10-C40) in Soil					
Our Reference		229219-21	229219-22	229219-23	229219-24
Your Reference	UNITS	TP23/0-0.3	TP23/0.4-0.6	BD1/20191023	BD2/20191023
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50
Surrogate o-Terphenyl	%	112	96	99	97

PAHs in Soil						
Our Reference		229219-1	229219-2	229219-3	229219-4	229219-5
Your Reference	UNITS	TP1/0-0.3	TP2/0.4-0.5	TP3/0.4-0.5	TP4/0.4-0.5	TP8/1.6-1.8
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.05	<0.05	0.1	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	0.05	<0.05	1.0	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	122	123	121	118	110

PAHs in Soil						
Our Reference		229219-6	229219-7	229219-8	229219-9	229219-10
Your Reference	UNITS	TP8/4.6-4.8	TP9/0-0.3	TP10/0-0.3	TP11/0-0.3	TP11/1.8-1.0
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.2	<0.1	0.3	<0.1
Pyrene	mg/kg	<0.1	0.2	<0.1	0.3	<0.1
Benzo(a)anthracene	mg/kg	<0.1	0.1	<0.1	0.1	<0.1
Chrysene	mg/kg	<0.1	0.1	<0.1	0.2	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.2	<0.05	0.2	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.1	<0.1	0.2	<0.1
Total +ve PAH's	mg/kg	<0.05	0.92	<0.05	1.8	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	119	116	100	128	110

PAHs in Soil						
Our Reference		229219-11	229219-12	229219-13	229219-14	229219-15
Your Reference	UNITS	TP12/1.6-1.8	TP12/3.6-3.8	TP13/0-0.3	TP13/2.8-3.0	TP14/0.4-0.5
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.3	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	0.3	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.2	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	1.4	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	115	110	105	118	123

PAHs in Soil						
Our Reference		229219-16	229219-17	229219-18	229219-19	229219-20
Your Reference	UNITS	TP15/0.4-0.6	TP16/0.4-0.6	TP17/0-0.3	TP17/0.4-0.5	TP18/0.4-0.5
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.05	<0.05	0.05	0.08	0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	0.05	<0.05	0.05	0.3	0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	94	97	97	100	124

PAHs in Soil					
Our Reference		229219-21	229219-22	229219-23	229219-24
Your Reference	UNITS	TP23/0-0.3	TP23/0.4-0.6	BD1/20191023	BD2/20191023
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.06	<0.05	<0.05	0.08
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	0.2	<0.05	<0.05	0.3
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	114	118	117	117

Organochlorine Pesticides in soil						
Our Reference		229219-1	229219-3	229219-4	229219-7	229219-8
Your Reference	UNITS	TP1/0-0.3	TP3/0.4-0.5	TP4/0.4-0.5	TP9/0-0.3	TP10/0-0.3
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	111	116	108	106	116

Organochlorine Pesticides in soil						
Our Reference		229219-9	229219-13	229219-15	229219-16	229219-18
Your Reference	UNITS	TP11/0-0.3	TP13/0-0.3	TP14/0.4-0.5	TP15/0.4-0.6	TP17/0-0.3
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	130	117	122	118	112

Organochlorine Pesticides in soil		
Our Reference		229219-21
Your Reference	UNITS	TP23/0-0.3
Date Sampled		23/10/2019
Type of sample		Soil
Date extracted	-	28/10/2019
Date analysed	-	29/10/2019
alpha-BHC	mg/kg	<0.1
НСВ	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	107

Organophosphorus Pesticides in Soil						
Our Reference		229219-1	229219-3	229219-4	229219-7	229219-8
Your Reference	UNITS	TP1/0-0.3	TP3/0.4-0.5	TP4/0.4-0.5	TP9/0-0.3	TP10/0-0.3
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	111	116	108	106	116

Organophosphorus Pesticides in Soil						
Our Reference		229219-9	229219-13	229219-15	229219-16	229219-18
Your Reference	UNITS	TP11/0-0.3	TP13/0-0.3	TP14/0.4-0.5	TP15/0.4-0.6	TP17/0-0.3
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	130	117	122	118	112

Organophosphorus Pesticides in Soil						
Our Reference		229219-21				
Your Reference	UNITS	TP23/0-0.3				
Date Sampled		23/10/2019				
Type of sample		Soil				
Date extracted	-	28/10/2019				
Date analysed	-	29/10/2019				
Dichlorvos	mg/kg	<0.1				
Dimethoate	mg/kg	<0.1				
Diazinon	mg/kg	<0.1				
Chlorpyriphos-methyl	mg/kg	<0.1				
Ronnel	mg/kg	<0.1				
Fenitrothion	mg/kg	<0.1				
Malathion	mg/kg	<0.1				
Chlorpyriphos	mg/kg	<0.1				
Parathion	mg/kg	<0.1				
Bromophos-ethyl	mg/kg	<0.1				
Ethion	mg/kg	<0.1				
Azinphos-methyl (Guthion)	mg/kg	<0.1				
Surrogate TCMX	%	107				
PCBs in Soil						
----------------------------	-------	------------	-------------	-------------	------------	------------
Our Reference		229219-1	229219-3	229219-4	229219-7	229219-8
Your Reference	UNITS	TP1/0-0.3	TP3/0.4-0.5	TP4/0.4-0.5	TP9/0-0.3	TP10/0-0.3
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	111	116	108	106	116

PCBs in Soil						
Our Reference		229219-9	229219-13	229219-15	229219-16	229219-18
Your Reference	UNITS	TP11/0-0.3	TP13/0-0.3	TP14/0.4-0.5	TP15/0.4-0.6	TP17/0-0.3
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	130	117	122	118	112

PCBs in Soil		
Our Reference		229219-21
Your Reference	UNITS	TP23/0-0.3
Date Sampled		23/10/2019
Type of sample		Soil
Date extracted	-	28/10/2019
Date analysed	-	29/10/2019
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCMX	%	107

Acid Extractable metals in soil						
Our Reference		229219-1	229219-2	229219-3	229219-4	229219-5
Your Reference	UNITS	TP1/0-0.3	TP2/0.4-0.5	TP3/0.4-0.5	TP4/0.4-0.5	TP8/1.6-1.8
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Arsenic	mg/kg	9	7	<4	<4	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	2	2	3	2	1
Copper	mg/kg	4	3	2	3	<1
Lead	mg/kg	5	4	6	6	1
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	1	1	2	<1	<1
Zinc	mg/kg	9	7	5	7	2

Acid Extractable metals in soil						
Our Reference		229219-6	229219-7	229219-8	229219-9	229219-10
Your Reference	UNITS	TP8/4.6-4.8	TP9/0-0.3	TP10/0-0.3	TP11/0-0.3	TP11/1.8-1.0
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Arsenic	mg/kg	<4	<4	6	8	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	1	4	4	4	1
Copper	mg/kg	<1	6	5	9	2
Lead	mg/kg	1	10	10	20	<1
Mercury	mg/kg	<0.1	<0.1	0.1	0.1	<0.1
Nickel	mg/kg	<1	2	2	2	<1
Zinc	mg/kg	3	13	14	12	14

Acid Extractable metals in soil						
Our Reference		229219-11	229219-12	229219-13	229219-14	229219-15
Your Reference	UNITS	TP12/1.6-1.8	TP12/3.6-3.8	TP13/0-0.3	TP13/2.8-3.0	TP14/0.4-0.5
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Arsenic	mg/kg	8	<4	7	<4	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	<1	2	3	<1	2
Copper	mg/kg	<1	<1	7	<1	4
Lead	mg/kg	1	1	17	<1	6
Mercury	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	2	<1	<1
Zinc	mg/kg	2	<1	13	<1	4
Acid Extractable metals in soil						
Acid Extractable metals in soil Our Reference		229219-16	229219-17	229219-18	229219-19	229219-20
Acid Extractable metals in soil Our Reference Your Reference	UNITS	229219-16 TP15/0.4-0.6	229219-17 TP16/0.4-0.6	229219-18 TP17/0-0.3	229219-19 TP17/0.4-0.5	229219-20 TP18/0.4-0.5
Acid Extractable metals in soil Our Reference Your Reference Date Sampled	UNITS	229219-16 TP15/0.4-0.6 23/10/2019	229219-17 TP16/0.4-0.6 23/10/2019	229219-18 TP17/0-0.3 23/10/2019	229219-19 TP17/0.4-0.5 23/10/2019	229219-20 TP18/0.4-0.5 23/10/2019
Acid Extractable metals in soil Our Reference Your Reference Date Sampled Type of sample	UNITS	229219-16 TP15/0.4-0.6 23/10/2019 Soil	229219-17 TP16/0.4-0.6 23/10/2019 Soil	229219-18 TP17/0-0.3 23/10/2019 Soil	229219-19 TP17/0.4-0.5 23/10/2019 Soil	229219-20 TP18/0.4-0.5 23/10/2019 Soil
Acid Extractable metals in soil Our Reference Your Reference Date Sampled Type of sample Date prepared	UNITS -	229219-16 TP15/0.4-0.6 23/10/2019 Soil 28/10/2019	229219-17 TP16/0.4-0.6 23/10/2019 Soil 28/10/2019	229219-18 TP17/0-0.3 23/10/2019 Soil 28/10/2019	229219-19 TP17/0.4-0.5 23/10/2019 Soil 28/10/2019	229219-20 TP18/0.4-0.5 23/10/2019 Soil 28/10/2019
Acid Extractable metals in soil Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed	UNITS - -	229219-16 TP15/0.4-0.6 23/10/2019 Soil 28/10/2019 28/10/2019	229219-17 TP16/0.4-0.6 23/10/2019 Soil 28/10/2019 28/10/2019	229219-18 TP17/0-0.3 23/10/2019 Soil 28/10/2019 28/10/2019	229219-19 TP17/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019	229219-20 TP18/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019
Acid Extractable metals in soil Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Arsenic	UNITS - - mg/kg	229219-16 TP15/0.4-0.6 23/10/2019 Soil 28/10/2019 28/10/2019 <4	229219-17 TP16/0.4-0.6 23/10/2019 Soil 28/10/2019 28/10/2019 <4	229219-18 TP17/0-0.3 23/10/2019 Soil 28/10/2019 28/10/2019 5	229219-19 TP17/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019 6	229219-20 TP18/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019 5
Acid Extractable metals in soil Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Arsenic Cadmium	UNITS - - mg/kg mg/kg	229219-16 TP15/0.4-0.6 23/10/2019 Soil 28/10/2019 28/10/2019 <4 <0.4	229219-17 TP16/0.4-0.6 23/10/2019 Soil 28/10/2019 28/10/2019 <4 <0.4	229219-18 TP17/0-0.3 23/10/2019 Soil 28/10/2019 28/10/2019 5 <0.4	229219-19 TP17/0.4-0.5 23/10/2019 Soil 28/10/2019 6 6 <0.4	229219-20 TP18/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019 5 <0.4
Acid Extractable metals in soil Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Arsenic Cadmium Chromium	UNITS - mg/kg mg/kg mg/kg	229219-16 TP15/0.4-0.6 23/10/2019 Soil 28/10/2019 28/10/2019 <4 <0.4 <0.4 2	229219-17 TP16/0.4-0.6 23/10/2019 Soil 28/10/2019 28/10/2019 <4 <0.4 1	229219-18 TP17/0-0.3 23/10/2019 Soil 28/10/2019 28/10/2019 5 5 <0.4 7	229219-19 TP17/0.4-0.5 23/10/2019 Soil 28/10/2019 6 6 <0.4 3	229219-20 TP18/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019 5 <0.4 <1
Acid Extractable metals in soil Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Arsenic Cadmium Chromium Copper	UNITS - - mg/kg mg/kg mg/kg mg/kg	229219-16 TP15/0.4-0.6 23/10/2019 Soil 28/10/2019 28/10/2019 <4 <0.4 <0.4 2 4	229219-17 TP16/0.4-0.6 23/10/2019 Soil 28/10/2019 28/10/2019 <4 <0.4 <0.4 1 2	229219-18 TP17/0-0.3 23/10/2019 Soil 28/10/2019 28/10/2019 5 <0.4 7 6	229219-19 TP17/0.4-0.5 23/10/2019 Soil 28/10/2019 6 6 <0.4 3 9	229219-20 TP18/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019 5 <0.4 <1 7
Acid Extractable metals in soil Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Arsenic Cadmium Chromium Copper Lead	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg	229219-16 TP15/0.4-0.6 23/10/2019 Soil 28/10/2019 28/10/2019 <4 <0.4 <0.4 2 4 3 8	229219-17 TP16/0.4-0.6 23/10/2019 Soil 28/10/2019 28/10/2019 <4 <0.4 1 1 2 3	229219-18 TP17/0-0.3 23/10/2019 Soil 28/10/2019 28/10/2019 5 <0.4 7 6 12	229219-19 TP17/0.4-0.5 23/10/2019 Soil 28/10/2019 6 6 <0.4 3 9 11	229219-20 TP18/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019 5 <0.4 <1 7 12
Acid Extractable metals in soil Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Arsenic Cadmium Chromium Copper Lead Mercury	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	229219-16 TP15/0.4-0.6 23/10/2019 Soil 28/10/2019 28/10/2019 <4 <0.4 <0.4 2 4 4 8 8 <0.1	229219-17 TP16/0.4-0.6 23/10/2019 Soil 28/10/2019 28/10/2019 <4 <0.4 <0.4 1 2 3 3 <0.1	229219-18 TP17/0-0.3 23/10/2019 Soil 28/10/2019 28/10/2019 5 <0.4 7 6 12 6 12 0.1	229219-19 TP17/0.4-0.5 23/10/2019 Soil 28/10/2019 6 6 <0.4 3 9 9 11 0.2	229219-20 TP18/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019 5 <0.4 <1 <1 7 12 <0.1
Acid Extractable metals in soil Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed Arsenic Cadmium Chromium Chromium Lead Mercury	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	229219-16 TP15/0.4-0.6 23/10/2019 Soil 28/10/2019 28/10/2019 <4 <0.4 <0.4 2 4 3 4 8 <0.1 1	229219-17 TP16/0.4-0.6 23/10/2019 Soil 28/10/2019 28/10/2019 <4 <0.4 <0.4 1 2 3 3 <0.1 <1	229219-18 TP17/0-0.3 23/10/2019 Soil 28/10/2019 28/10/2019 5 <0.4 7 6 12 6 12 0.1 2	229219-19 TP17/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019 6 <0.4 3 3 9 11 11 0.2 1	229219-20 TP18/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019 5 <0.4 <1 <1 7 12 <0.1 <1

Acid Extractable metals in soil					
Our Reference		229219-21	229219-22	229219-23	229219-24
Your Reference	UNITS	TP23/0-0.3	TP23/0.4-0.6	BD1/20191023	BD2/20191023
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Arsenic	mg/kg	10	4	<4	8
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	5	1	4	4
Copper	mg/kg	8	<1	6	7
Lead	mg/kg	17	3	10	15
Mercury	mg/kg	0.2	<0.1	<0.1	0.1
Nickel	mg/kg	2	<1	2	2
Zinc	mg/kg	19	2	14	15

Misc Soil - Inorg						
Our Reference		229219-1	229219-3	229219-4	229219-7	229219-8
Your Reference	UNITS	TP1/0-0.3	TP3/0.4-0.5	TP4/0.4-0.5	TP9/0-0.3	TP10/0-0.3
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference		229219-9	229219-13	229219-15	229219-16	229219-18
Your Reference	UNITS	TP11/0-0.3	TP13/0-0.3	TP14/0.4-0.5	TP15/0.4-0.6	TP17/0-0.3
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Misc Soil - Inorg		
Our Reference		229219-21
Your Reference	UNITS	TP23/0-0.3
Date Sampled		23/10/2019
Type of sample		Soil
Date prepared	-	28/10/2019
Date analysed	-	28/10/2019
Total Phenolics (as Phenol)	mg/kg	<5

Misc Inorg - Soil						
Our Reference		229219-1	229219-2	229219-3	229219-4	229219-5
Your Reference	UNITS	TP1/0-0.3	TP2/0.4-0.5	TP3/0.4-0.5	TP4/0.4-0.5	TP8/1.6-1.8
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
pH 1:5 soil:water	pH Units	5.9	6.5	6.0	6.4	6.3
Electrical Conductivity 1:5 soil:water	μS/cm	32	22	14	16	9
Misc Inorg - Soil						
Our Reference		229219-6	229219-7	229219-8	229219-9	229219-10
Your Reference	UNITS	TP8/4.6-4.8	TP9/0-0.3	TP10/0-0.3	TP11/0-0.3	TP11/1.8-1.0
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
pH 1:5 soil:water	pH Units	5.9	6.2	6.6	5.9	5.6
Electrical Conductivity 1:5 soil:water	µS/cm	11	16	16	23	8
Misc Inorg - Soil						
Our Reference		229219-11	229219-12	229219-13	229219-14	229219-15
Your Reference	UNITS	TP12/1.6-1.8	TP12/3.6-3.8	TP13/0-0.3	TP13/2.8-3.0	TP14/0.4-0.5
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
pH 1:5 soil:water	pH Units	6.1	5.8	5.9	5.5	6.1
Electrical Conductivity 1:5 soil:water	μS/cm	10	12	20	12	12
Misc Inorg - Soil						
Our Reference		229219-16	229219-17	229219-18	229219-19	229219-20
Your Reference	UNITS	TP15/0.4-0.6	TP16/0.4-0.6	TP17/0-0.3	TP17/0.4-0.5	TP18/0.4-0.5
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date prepared Date analysed	-	28/10/2019 28/10/2019	28/10/2019 28/10/2019	28/10/2019 28/10/2019	28/10/2019 28/10/2019	28/10/2019 28/10/2019
Date prepared Date analysed pH 1:5 soil:water	- - pH Units	28/10/2019 28/10/2019 6.4	28/10/2019 28/10/2019 6.3	28/10/2019 28/10/2019 5.8	28/10/2019 28/10/2019 6.0	28/10/2019 28/10/2019 6.4

Misc Inorg - Soil			
Our Reference		229219-21	229219-22
Your Reference	UNITS	TP23/0-0.3	TP23/0.4-0.6
Date Sampled		23/10/2019	23/10/2019
Type of sample		Soil	Soil
Date prepared	-	28/10/2019	28/10/2019
Date analysed	-	28/10/2019	28/10/2019
pH 1:5 soil:water	pH Units	6.7	6.4
Electrical Conductivity 1:5 soil:water	μS/cm	20	13

Moisture						
Our Reference		229219-1	229219-2	229219-3	229219-4	229219-5
Your Reference	UNITS	TP1/0-0.3	TP2/0.4-0.5	TP3/0.4-0.5	TP4/0.4-0.5	TP8/1.6-1.8
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Moisture	%	0.2	6.2	0.2	0.5	3.8
Moisture						
Our Reference		229219-6	229219-7	229219-8	229219-9	229219-10
Your Reference	UNITS	TP8/4.6-4.8	TP9/0-0.3	TP10/0-0.3	TP11/0-0.3	TP11/1.8-1.0
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Moisture	%	3.7	0.6	1.3	5.6	0.6
Moisture						
Our Reference		229219-11	229219-12	229219-13	229219-14	229219-15
Your Reference	UNITS	TP12/1.6-1.8	TP12/3.6-3.8	TP13/0-0.3	TP13/2.8-3.0	TP14/0.4-0.5
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Moisture	%	3.4	4.1	1.6	0.6	0.1
Moisture		·	·			
Our Reference		229219-16	229219-17	229219-18	229219-19	229219-20
Your Reference	UNITS	TP15/0.4-0.6	TP16/0.4-0.6	TP17/0-0.3	TP17/0.4-0.5	TP18/0.4-0.5
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Date analysed	-	29/10/2019	29/10/2019	29/10/2019	29/10/2019	29/10/2019
Moisture	%	2.7	0.3	0.7	0.3	<0.1
Moisture						
Our Reference		229219-21	229219-22			
Your Reference	UNITS	TP23/0-0.3	TP23/0.4-0.6			
Date Sampled		23/10/2019	23/10/2019			
Type of sample		Soil	Soil			
Date prepared	-	28/10/2019	28/10/2019			
Date analysed	-	29/10/2019	29/10/2019			
Moisture	%	5.6	2.0			

Asbestos ID - soils NEPM						
Our Reference		229219-4	229219-5	229219-7	229219-10	229219-13
Your Reference	UNITS	TP4/0.4-0.5	TP8/1.6-1.8	TP9/0-0.3	TP11/1.8-1.0	TP13/0-0.3
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Sample mass tested	g	1,477.34	1,466.87	1,404.91	1,571.3	1,320.09
Sample Description	-	Brown sandy soil & rocks				
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	-	_	_	-	-
FA and AF Estimation*	g	-	-	-	-	-
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM						
Our Reference		229219-16	229219-18	229219-19	229219-21	229219-25
Your Reference	UNITS	TP15/0.4-0.6	TP17/0-0.3	TP17/0.4-0.5	TP23/0-0.3	TP2/0-0.3
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019
Sample mass tested	g	1,442.2	1,456.99	1,474.9	1,435.79	1,512.9
Sample Description	-	Grey rocks	Brown sandy soil & rocks	Brown sandy soil & rocks	Brown sandy soil & rocks	Brown sandy soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	_	-	-	-	-
FA and AF Estimation*	g	-	-	-	-	-
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

RTA276 ENM* Foreign Material							
Our Reference		229219-1	229219-2	229219-3	229219-4	229219-5	
Your Reference	UNITS	TP1/0-0.3	TP2/0.4-0.5	TP3/0.4-0.5	TP4/0.4-0.5	TP8/1.6-1.8	
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019	
Type of sample		Soil	Soil	Soil	Soil	Soil	
Date prepared	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019	
Date analysed	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019	
Sample Mass Tested	g	4,900	6,400	3,800	3,800 4,500		
Foreign Material	%	<0.05	<0.05	<0.05	<0.05	<0.05	
RTA276 ENM* Foreign Material							
Our Reference		229219-6	229219-7	229219-8	229219-9	229219-10	
Your Reference	UNITS	TP8/4.6-4.8	TP9/0-0.3	TP10/0-0.3	TP11/0-0.3	TP11/1.8-1.0	
Date Sampled		23/10/2019	23/10/2019	23/10/2019	23/10/2019	23/10/2019	
Type of sample		Soil	Soil	Soil	Soil	Soil	
Date prepared	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019	
Date analysed	-	28/10/2019	28/10/2019	28/10/2019	28/10/2019	28/10/2019	
Sample Mass Tested	g	5,000	5,600	6,100	3,500	4,500	
Foreign Material	%	<0.05	<0.05	<0.05	<0.05	<0.05	
RTA276 ENM* Foreign Material							
RTA276 ENM* Foreign Material Our Reference		229219-11	229219-12	229219-13	229219-14	229219-15	
RTA276 ENM* Foreign Material Our Reference Your Reference	UNITS	229219-11 TP12/1.6-1.8	229219-12 TP12/3.6-3.8	229219-13 TP13/0-0.3	229219-14 TP13/2.8-3.0	229219-15 TP14/0.4-0.5	
RTA276 ENM* Foreign Material Our Reference Your Reference Date Sampled	UNITS	229219-11 TP12/1.6-1.8 23/10/2019	229219-12 TP12/3.6-3.8 23/10/2019	229219-13 TP13/0-0.3 23/10/2019	229219-14 TP13/2.8-3.0 23/10/2019	229219-15 TP14/0.4-0.5 23/10/2019	
RTA276 ENM* Foreign Material Our Reference Your Reference Date Sampled Type of sample	UNITS	229219-11 TP12/1.6-1.8 23/10/2019 Soil	229219-12 TP12/3.6-3.8 23/10/2019 Soil	229219-13 TP13/0-0.3 23/10/2019 Soil	229219-14 TP13/2.8-3.0 23/10/2019 Soil	229219-15 TP14/0.4-0.5 23/10/2019 Soil	
RTA276 ENM* Foreign Material Our Reference Your Reference Date Sampled Type of sample Date prepared	UNITS -	229219-11 TP12/1.6-1.8 23/10/2019 Soil 28/10/2019	229219-12 TP12/3.6-3.8 23/10/2019 Soil 28/10/2019	229219-13 TP13/0-0.3 23/10/2019 Soil 28/10/2019	229219-14 TP13/2.8-3.0 23/10/2019 Soil 28/10/2019	229219-15 TP14/0.4-0.5 23/10/2019 Soil 28/10/2019	
RTA276 ENM* Foreign Material Our Reference Your Reference Date Sampled Type of sample Date prepared Date analysed	UNITS - -	229219-11 TP12/1.6-1.8 23/10/2019 Soil 28/10/2019 28/10/2019	229219-12 TP12/3.6-3.8 23/10/2019 Soil 28/10/2019 28/10/2019	229219-13 TP13/0-0.3 23/10/2019 Soil 28/10/2019 28/10/2019	229219-14 TP13/2.8-3.0 23/10/2019 Soil 28/10/2019 28/10/2019	229219-15 TP14/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019	
RTA276 ENM* Foreign MaterialOur ReferenceYour ReferenceDate SampledType of sampleDate preparedDate analysedSample Mass Tested	UNITS - - g	229219-11 TP12/1.6-1.8 23/10/2019 Soil 28/10/2019 28/10/2019 5,100	229219-12 TP12/3.6-3.8 23/10/2019 Soil 28/10/2019 28/10/2019 5,900	229219-13 TP13/0-0.3 23/10/2019 Soil 28/10/2019 28/10/2019 4,700	229219-14 TP13/2.8-3.0 23/10/2019 Soil 28/10/2019 28/10/2019 5,400	229219-15 TP14/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019 5,200	
RTA276 ENM* Foreign MaterialOur ReferenceYour ReferenceDate SampledType of sampleDate preparedDate analysedSample Mass TestedForeign Material	UNITS - - g %	229219-11 TP12/1.6-1.8 23/10/2019 Soil 28/10/2019 28/10/2019 5,100 <0.05	229219-12 TP12/3.6-3.8 23/10/2019 Soil 28/10/2019 28/10/2019 5,900 <0.05	229219-13 TP13/0-0.3 23/10/2019 Soil 28/10/2019 28/10/2019 4,700 <0.05	229219-14 TP13/2.8-3.0 23/10/2019 Soil 28/10/2019 28/10/2019 5,400 <0.05	229219-15 TP14/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019 5,200 <0.05	
RTA276 ENM* Foreign MaterialOur ReferenceYour ReferenceDate SampledType of sampleDate preparedDate analysedSample Mass TestedForeign MaterialRTA276 ENM* Foreign Material	UNITS - - g %	229219-11 TP12/1.6-1.8 23/10/2019 Soil 28/10/2019 28/10/2019 5,100 <0.05	229219-12 TP12/3.6-3.8 23/10/2019 Soil 28/10/2019 28/10/2019 5,900 <0.05	229219-13 TP13/0-0.3 23/10/2019 Soil 28/10/2019 28/10/2019 4,700 <0.05	229219-14 TP13/2.8-3.0 23/10/2019 Soil 28/10/2019 28/10/2019 5,400 <0.05	229219-15 TP14/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019 5,200 <0.05	
RTA276 ENM* Foreign MaterialOur ReferenceYour ReferenceDate SampledType of sampleDate preparedDate analysedSample Mass TestedForeign MaterialRTA276 ENM* Foreign MaterialOur Reference	UNITS - g %	229219-11 TP12/1.6-1.8 23/10/2019 Soil 28/10/2019 28/10/2019 5,100 <0.05 229219-16	229219-12 TP12/3.6-3.8 23/10/2019 Soil 28/10/2019 28/10/2019 5,900 <0.05	229219-13 TP13/0-0.3 23/10/2019 Soil 28/10/2019 28/10/2019 4,700 <0.05	229219-14 TP13/2.8-3.0 23/10/2019 Soil 28/10/2019 28/10/2019 5,400 <0.05	229219-15 TP14/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019 5,200 <0.05	
RTA276 ENM* Foreign MaterialOur ReferenceYour ReferenceDate SampledType of sampleDate preparedDate analysedSample Mass TestedForeign MaterialRTA276 ENM* Foreign MaterialOur ReferenceYour ReferenceYour Reference	UNITS - - g % UNITS	229219-11 TP12/1.6-1.8 23/10/2019 Soil 28/10/2019 28/10/2019 5,100 <0.05 229219-16 TP15/0.4-0.6	229219-12 TP12/3.6-3.8 23/10/2019 Soil 28/10/2019 28/10/2019 5,900 <0.05 229219-17 TP16/0.4-0.6	229219-13 TP13/0-0.3 23/10/2019 Soil 28/10/2019 28/10/2019 4,700 <0.05 229219-18 TP17/0-0.3	229219-14 TP13/2.8-3.0 23/10/2019 Soil 28/10/2019 28/10/2019 5,400 <0.05 229219-19 TP17/0.4-0.5	229219-15 TP14/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019 5,200 <0.05 229219-20 TP18/0.4-0.5	
RTA276 ENM* Foreign MaterialOur ReferenceYour ReferenceDate SampledType of sampleDate preparedDate analysedSample Mass TestedForeign MaterialOur ReferenceYour ReferenceYour ReferenceDate Sampled	UNITS - - % UNITS	229219-11 TP12/1.6-1.8 23/10/2019 Soil 28/10/2019 28/10/2019 5,100 <0.05 229219-16 TP15/0.4-0.6 23/10/2019	229219-12 TP12/3.6-3.8 23/10/2019 Soil 28/10/2019 28/10/2019 5,900 <0.05 229219-17 TP16/0.4-0.6 23/10/2019	229219-13 TP13/0-0.3 23/10/2019 Soil 28/10/2019 28/10/2019 4,700 <0.05 229219-18 TP17/0-0.3 23/10/2019	229219-14 TP13/2.8-3.0 23/10/2019 Soil 28/10/2019 28/10/2019 5,400 <0.05 229219-19 TP17/0.4-0.5 23/10/2019	229219-15 TP14/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019 5,200 <0.05 229219-20 TP18/0.4-0.5 23/10/2019	
RTA276 ENM* Foreign MaterialOur ReferenceYour ReferenceDate SampledType of sampleDate preparedDate analysedSample Mass TestedForeign MaterialRTA276 ENM* Foreign MaterialOur ReferenceYour ReferenceDate SampledType of sample	UNITS - g % UNITS	229219-11 TP12/1.6-1.8 23/10/2019 Soil 28/10/2019 28/10/2019 5,100 <0.05 229219-16 TP15/0.4-0.6 23/10/2019 Soil	229219-12 TP12/3.6-3.8 23/10/2019 Soil 28/10/2019 28/10/2019 5,900 <0.05 229219-17 TP16/0.4-0.6 23/10/2019 Soil	229219-13 TP13/0-0.3 23/10/2019 Soil 28/10/2019 28/10/2019 4,700 <0.05 229219-18 TP17/0-0.3 23/10/2019 Soil	229219-14 TP13/2.8-3.0 23/10/2019 Soil 28/10/2019 28/10/2019 28/10/2019 5,400 <0.05 229219-19 TP17/0.4-0.5 23/10/2019 Soil	229219-15 TP14/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019 5,200 <0.05 229219-20 TP18/0.4-0.5 23/10/2019 Soil	
RTA276 ENM* Foreign MaterialOur ReferenceYour ReferenceDate SampledType of sampleDate preparedDate analysedSample Mass TestedForeign MaterialRTA276 ENM* Foreign MaterialOur ReferenceYour ReferenceDate SampledType of sampleDate SampledType of sampleDate prepared	UNITS UNITS	229219-11 TP12/1.6-1.8 23/10/2019 Soil 28/10/2019 28/10/2019 5,100 <0.05 229219-16 TP15/0.4-0.6 23/10/2019 Soil 28/10/2019	229219-12 TP12/3.6-3.8 23/10/2019 Soil 28/10/2019 28/10/2019 5,900 <0.05 229219-17 TP16/0.4-0.6 23/10/2019 Soil 28/10/2019	229219-13 TP13/0-0.3 23/10/2019 Soil 28/10/2019 28/10/2019 4,700 <0.05 229219-18 TP17/0-0.3 23/10/2019 Soil 28/10/2019	229219-14 TP13/2.8-3.0 23/10/2019 Soil 28/10/2019 28/10/2019 5,400 <0.05 229219-19 TP17/0.4-0.5 23/10/2019 Soil 28/10/2019	229219-15 TP14/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019 5,200 <0.05 229219-20 TP18/0.4-0.5 23/10/2019 Soil 28/10/2019	
RTA276 ENM* Foreign MaterialOur ReferenceYour ReferenceDate SampledType of sampleDate preparedDate analysedSample Mass TestedForeign MaterialRTA276 ENM* Foreign MaterialOur ReferenceYour ReferenceDate SampledType of sampleDate SampledType of sampleDate preparedDate preparedDate preparedDate analysed	UNITS UNITS	229219-11 TP12/1.6-1.8 23/10/2019 Soil 28/10/2019 28/10/2019 5,100 <0.05 229219-16 TP15/0.4-0.6 23/10/2019 Soil 28/10/2019 28/10/2019	229219-12 TP12/3.6-3.8 23/10/2019 Soil 28/10/2019 28/10/2019 5,900 <0.05 229219-17 TP16/0.4-0.6 23/10/2019 Soil 28/10/2019 28/10/2019	229219-13 TP13/0-0.3 23/10/2019 Soil 28/10/2019 28/10/2019 4,700 <0.05 229219-18 TP17/0-0.3 23/10/2019 Soil 28/10/2019 28/10/2019	229219-14 TP13/2.8-3.0 23/10/2019 Soil 28/10/2019 28/10/2019 28/10/2019 5,400 <0.05 229219-19 TP17/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019	229219-15 TP14/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019 5,200 <0.05 23/0/2019 229219-20 TP18/0.4-0.5 23/10/2019 Soil 28/10/2019	
RTA276 ENM* Foreign MaterialOur ReferenceYour ReferenceDate SampledType of sampleDate preparedDate analysedSample Mass TestedForeign MaterialRTA276 ENM* Foreign MaterialOur ReferenceYour ReferenceDate SampledType of sampleDate analysedSample Mass Tested	UNITS UNITS	229219-11 TP12/1.6-1.8 23/10/2019 Soil 28/10/2019 28/10/2019 5,100 <0.05 229219-16 TP15/0.4-0.6 23/10/2019 Soil 28/10/2019 28/10/2019 4,300	229219-12 TP12/3.6-3.8 23/10/2019 Soil 28/10/2019 28/10/2019 5,900 <0.05 229219-17 TP16/0.4-0.6 23/10/2019 Soil 28/10/2019 28/10/2019 6,800	229219-13 TP13/0-0.3 23/10/2019 Soil 28/10/2019 4,700 <0.05 229219-18 TP17/0-0.3 23/10/2019 Soil 28/10/2019 28/10/2019 5,600	229219-14 TP13/2.8-3.0 23/10/2019 Soil 28/10/2019 28/10/2019 5,400 <0.05 229219-19 TP17/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019 4,200	229219-15 TP14/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019 5,200 <0.05 229219-20 TP18/0.4-0.5 23/10/2019 Soil 28/10/2019 28/10/2019 5,500	

RTA276 ENM* Foreign Material			
Our Reference		229219-21	229219-22
Your Reference	UNITS	TP23/0-0.3	TP23/0.4-0.6
Date Sampled		23/10/2019	23/10/2019
Type of sample		Soil	Soil
Date prepared	-	28/10/2019	28/10/2019
Date analysed	-	28/10/2019	28/10/2019
Sample Mass Tested	g	5,800	6,000
Foreign Material	%	<0.05	<0.05

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
AT-008	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-080 ENM	This method is based on RTA T276 and as per NSW DECC Resource Recovery Exemption Guidelines and correspondence. It includes rubber, plastic, bitumen, paper, cloth, paint and wood (Note wood is construction timber only, naturally occuring wood/twigs/roots are excluded). RTA T276 requires at least 6kg of sample for this test.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.

Method ID	Methodology Summary
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS.
Org-012/017	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS and/or GC-MS/MS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
RTA276	RTA 276 - Modified to Environmental Operations (Waste) - 2005 General Exemption under Part 6, Clause 51A.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil		Duplicate Spike Recove					covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	229219-3
Date extracted	-			28/10/2019	1	28/10/2019	28/10/2019		28/10/2019	28/10/2019
Date analysed	-			29/10/2019	1	29/10/2019	29/10/2019		29/10/2019	29/10/2019
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	1	<25	<25	0	73	84
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	1	<25	<25	0	73	84
Benzene	mg/kg	0.2	Org-016	<0.2	1	<0.2	<0.2	0	72	84
Toluene	mg/kg	0.5	Org-016	<0.5	1	<0.5	<0.5	0	75	73
Ethylbenzene	mg/kg	1	Org-016	<1	1	<1	<1	0	74	88
m+p-xylene	mg/kg	2	Org-016	<2	1	<2	<2	0	73	87
o-Xylene	mg/kg	1	Org-016	<1	1	<1	<1	0	72	87
naphthalene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	85	1	77	70	10	80	78

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Duplicate Spike R			Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	229219-22
Date extracted	-			[NT]	13	28/10/2019	28/10/2019		28/10/2019	28/10/2019
Date analysed	-			[NT]	13	29/10/2019	29/10/2019		29/10/2019	29/10/2019
TRH C ₆ - C ₉	mg/kg	25	Org-016	[NT]	13	<25	<25	0	80	80
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	[NT]	13	<25	<25	0	80	80
Benzene	mg/kg	0.2	Org-016	[NT]	13	<0.2	<0.2	0	80	78
Toluene	mg/kg	0.5	Org-016	[NT]	13	<0.5	<0.5	0	84	94
Ethylbenzene	mg/kg	1	Org-016	[NT]	13	<1	<1	0	80	77
m+p-xylene	mg/kg	2	Org-016	[NT]	13	<2	<2	0	78	75
o-Xylene	mg/kg	1	Org-016	[NT]	13	<1	<1	0	78	76
naphthalene	mg/kg	1	Org-014	[NT]	13	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	[NT]	13	88	89	1	89	85

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil		Duplicate					Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	21	28/10/2019	28/10/2019		[NT]	[NT]	
Date analysed	-			[NT]	21	29/10/2019	29/10/2019		[NT]	[NT]	
TRH C ₆ - C ₉	mg/kg	25	Org-016	[NT]	21	<25	<25	0	[NT]	[NT]	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	[NT]	21	<25	<25	0	[NT]	[NT]	
Benzene	mg/kg	0.2	Org-016	[NT]	21	<0.2	<0.2	0	[NT]	[NT]	
Toluene	mg/kg	0.5	Org-016	[NT]	21	<0.5	<0.5	0	[NT]	[NT]	
Ethylbenzene	mg/kg	1	Org-016	[NT]	21	<1	<1	0	[NT]	[NT]	
m+p-xylene	mg/kg	2	Org-016	[NT]	21	<2	<2	0	[NT]	[NT]	
o-Xylene	mg/kg	1	Org-016	[NT]	21	<1	<1	0	[NT]	[NT]	
naphthalene	mg/kg	1	Org-014	[NT]	21	<1	<1	0	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	[NT]	21	76	91	18	[NT]	[NT]	

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	229219-3
Date extracted	-			28/10/2019	1	28/10/2019	28/10/2019		28/10/2019	28/10/2019
Date analysed	-			29/10/2019	1	28/10/2019	28/10/2019		28/10/2019	28/10/2019
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	1	<50	<50	0	107	124
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	1	<100	<100	0	112	130
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	1	<100	<100	0	121	107
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	1	<50	<50	0	107	124
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	1	<100	<100	0	112	130
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	1	<100	<100	0	121	107
Surrogate o-Terphenyl	%		Org-003	98	1	101	104	3	107	120

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil		Duplicate Spike R					covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	229219-22
Date extracted	-			[NT]	13	28/10/2019	28/10/2019		28/10/2019	28/10/2019
Date analysed	-			[NT]	13	28/10/2019	28/10/2019		29/10/2019	29/10/2019
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	[NT]	13	<50	<50	0	108	110
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	[NT]	13	<100	<100	0	113	116
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	[NT]	13	<100	<100	0	106	99
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	[NT]	13	<50	<50	0	108	110
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	[NT]	13	<100	<100	0	113	116
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	[NT]	13	<100	<100	0	106	99
Surrogate o-Terphenyl	%		Org-003	[NT]	13	99	98	1	106	96

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				21	28/10/2019	28/10/2019		[NT]	
Date analysed	-				21	29/10/2019	29/10/2019		[NT]	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003		21	<50	<50	0	[NT]	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003		21	<100	<100	0	[NT]	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003		21	<100	<100	0	[NT]	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003		21	<50	<50	0	[NT]	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003		21	<100	<100	0	[NT]	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003		21	<100	<100	0	[NT]	
Surrogate o-Terphenyl	%		Org-003	[NT]	21	112	98	13	[NT]	[NT]

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	229219-3
Date extracted	-			28/10/2019	1	28/10/2019	28/10/2019		28/10/2019	28/10/2019
Date analysed	-			29/10/2019	1	29/10/2019	29/10/2019		29/10/2019	29/10/2019
Naphthalene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	110	112
Acenaphthylene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	102	104
Phenanthrene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	102	122
Anthracene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	98	121
Pyrene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	100	119
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	104	114
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	<0.05	1	0.05	0.05	0	106	112
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012/017	121	1	122	114	7	106	104

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	229219-22
Date extracted	-			[NT]	13	28/10/2019	28/10/2019		28/10/2019	28/10/2019
Date analysed	-			[NT]	13	29/10/2019	29/10/2019		29/10/2019	29/10/2019
Naphthalene	mg/kg	0.1	Org-012/017	[NT]	13	<0.1	<0.1	0	122	101
Acenaphthylene	mg/kg	0.1	Org-012/017	[NT]	13	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012/017	[NT]	13	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012/017	[NT]	13	<0.1	<0.1	0	86	81
Phenanthrene	mg/kg	0.1	Org-012/017	[NT]	13	<0.1	<0.1	0	110	95
Anthracene	mg/kg	0.1	Org-012/017	[NT]	13	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012/017	[NT]	13	0.3	0.3	0	104	89
Pyrene	mg/kg	0.1	Org-012/017	[NT]	13	0.3	0.3	0	108	93
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	[NT]	13	0.1	0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012/017	[NT]	13	0.2	0.2	0	112	97
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	[NT]	13	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	[NT]	13	0.2	0.2	0	116	105
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	[NT]	13	0.1	0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	[NT]	13	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	[NT]	13	0.2	0.2	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012/017	[NT]	13	105	121	14	114	100

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	21	28/10/2019	28/10/2019			
Date analysed	-			[NT]	21	29/10/2019	29/10/2019			
Naphthalene	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0		
Acenaphthylene	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0		
Acenaphthene	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0		
Fluorene	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0		
Phenanthrene	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0		
Anthracene	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0		
Fluoranthene	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	0.1	0		
Pyrene	mg/kg	0.1	Org-012/017	[NT]	21	0.1	0.1	0		
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0		
Chrysene	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0		
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	[NT]	21	<0.2	<0.2	0		
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	[NT]	21	0.06	0.1	50		
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0		
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0		
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	[NT]	21	<0.1	<0.1	0		
Surrogate p-Terphenyl-d14	%		Org-012/017	[NT]	21	114	120	5	[NT]	[NT]

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	229219-3
Date extracted	-			28/10/2019	1	28/10/2019	28/10/2019		28/10/2019	28/10/2019
Date analysed	-			29/10/2019	1	29/10/2019	29/10/2019		29/10/2019	29/10/2019
alpha-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	106	97
НСВ	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	94	79
gamma-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	88	85
delta-BHC	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	106	112
Heptachlor Epoxide	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	100	97
gamma-Chlordane	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	102	99
Dieldrin	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	120	112
Endrin	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	106	102
Endosulfan II	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	100	93
Endrin Aldehyde	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	96	74
Methoxychlor	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-012/017	114	1	111	114	3	99	103

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-				13	28/10/2019	28/10/2019		28/10/2019	[NT]
Date analysed	-				13	29/10/2019	29/10/2019		29/10/2019	[NT]
alpha-BHC	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	94	[NT]
НСВ	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	82	[NT]
gamma-BHC	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	90	[NT]
delta-BHC	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	114	[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	106	[NT]
gamma-Chlordane	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	112	[NT]
Dieldrin	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	116	[NT]
Endrin	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	76	[NT]
Endosulfan II	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	104	[NT]
Endrin Aldehyde	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	100	[NT]
Methoxychlor	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-012/017	[NT]	13	117	114	3	101	[NT]

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				21	28/10/2019	28/10/2019		[NT]	
Date analysed	-				21	29/10/2019	29/10/2019		[NT]	
alpha-BHC	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	
НСВ	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	
beta-BHC	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	
gamma-BHC	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	
Heptachlor	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	
delta-BHC	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	
Aldrin	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	
Heptachlor Epoxide	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	
gamma-Chlordane	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	
alpha-chlordane	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	
Endosulfan I	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	
pp-DDE	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	
Dieldrin	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	
Endrin	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	
Endosulfan II	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	
pp-DDD	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	
Endrin Aldehyde	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	
pp-DDT	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	
Methoxychlor	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	
Surrogate TCMX	%		Org-012/017	[NT]	21	107	113	5	[NT]	[NT]

QUALITY CONTRO	L: Organoph	osphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	229219-3
Date extracted	-			28/10/2019	1	28/10/2019	28/10/2019		28/10/2019	28/10/2019
Date analysed	-			29/10/2019	1	29/10/2019	29/10/2019		29/10/2019	29/10/2019
Dichlorvos	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	130	109
Dimethoate	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	82	88
Diazinon	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	110	103
Fenitrothion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	108	75
Malathion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	112	126
Chlorpyriphos	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	124	118
Parathion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	128	101
Bromophos-ethyl	mg/kg	0.1	AT-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	110	83
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-012/017	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-012/017	114	1	111	114	3	99	103

QUALITY CONTRO	L: Organoph	osphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-				13	28/10/2019	28/10/2019		28/10/2019	[NT]
Date analysed	-				13	29/10/2019	29/10/2019		29/10/2019	[NT]
Dichlorvos	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	128	[NT]
Dimethoate	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	87	[NT]
Diazinon	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	116	[NT]
Fenitrothion	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	88	[NT]
Malathion	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	118	[NT]
Chlorpyriphos	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	126	[NT]
Parathion	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	116	[NT]
Bromophos-ethyl	mg/kg	0.1	AT-008		13	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	108	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-012/017		13	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-012/017		13	117	114	3	101	[NT]

QUALITY CONTRO	L: Organoph	osphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				21	28/10/2019	28/10/2019		[NT]	[NT]
Date analysed	-				21	29/10/2019	29/10/2019		[NT]	[NT]
Dichlorvos	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	[NT]
Fenitrothion	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	[NT]
Malathion	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	[NT]
Bromophos-ethyl	mg/kg	0.1	AT-008		21	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-012/017		21	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-012/017	[NT]	21	107	113	5	[NT]	[NT]

QUALIT	Y CONTRO	L: PCBs i	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	229219-3
Date extracted	-			28/10/2019	1	28/10/2019	28/10/2019		28/10/2019	28/10/2019
Date analysed	-			29/10/2019	1	29/10/2019	29/10/2019		29/10/2019	29/10/2019
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	80	80
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-006	114	1	111	114	3	99	103

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-			[NT]	13	28/10/2019	28/10/2019		28/10/2019	[NT]
Date analysed	-			[NT]	13	29/10/2019	29/10/2019		29/10/2019	[NT]
Aroclor 1016	mg/kg	0.1	Org-006	[NT]	13	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-006	[NT]	13	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-006	[NT]	13	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-006	[NT]	13	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-006	[NT]	13	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-006	[NT]	13	<0.1	<0.1	0	91	[NT]
Aroclor 1260	mg/kg	0.1	Org-006	[NT]	13	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-006	[NT]	13	117	114	3	101	[NT]

QUALIT	TY CONTRO	L: PCBs	in Soil			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	21	28/10/2019	28/10/2019			
Date analysed	-			[NT]	21	29/10/2019	29/10/2019			
Aroclor 1016	mg/kg	0.1	Org-006	[NT]	21	<0.1	<0.1	0		
Aroclor 1221	mg/kg	0.1	Org-006	[NT]	21	<0.1	<0.1	0		
Aroclor 1232	mg/kg	0.1	Org-006	[NT]	21	<0.1	<0.1	0		
Aroclor 1242	mg/kg	0.1	Org-006	[NT]	21	<0.1	<0.1	0		
Aroclor 1248	mg/kg	0.1	Org-006	[NT]	21	<0.1	<0.1	0		
Aroclor 1254	mg/kg	0.1	Org-006	[NT]	21	<0.1	<0.1	0		
Aroclor 1260	mg/kg	0.1	Org-006	[NT]	21	<0.1	<0.1	0		
Surrogate TCMX	%		Org-006	[NT]	21	107	113	5	[NT]	[NT]

QUALITY CONT	ROL: Acid E	Extractabl	e metals in soil		Duplicate Spike Recovery						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	229219-3	
Date prepared	-			28/10/2019	1	28/10/2019	28/10/2019		28/10/2019	28/10/2019	
Date analysed	-			28/10/2019	1	28/10/2019	28/10/2019		28/10/2019	28/10/2019	
Arsenic	mg/kg	4	Metals-020	<4	1	9	10	11	109	107	
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	108	109	
Chromium	mg/kg	1	Metals-020	<1	1	2	2	0	110	105	
Copper	mg/kg	1	Metals-020	<1	1	4	4	0	108	110	
Lead	mg/kg	1	Metals-020	<1	1	5	5	0	108	104	
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	102	96	
Nickel	mg/kg	1	Metals-020	<1	1	1	1	0	104	106	
Zinc	mg/kg	1	Metals-020	<1	1	9	9	0	105	104	

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil		Duplicate Spike Recover						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	229219-22	
Date prepared	-			[NT]	13	28/10/2019	28/10/2019		28/10/2019	28/10/2019	
Date analysed	-			[NT]	13	28/10/2019	28/10/2019		28/10/2019	28/10/2019	
Arsenic	mg/kg	4	Metals-020	[NT]	13	7	8	13	111	111	
Cadmium	mg/kg	0.4	Metals-020	[NT]	13	<0.4	<0.4	0	109	110	
Chromium	mg/kg	1	Metals-020	[NT]	13	3	3	0	115	110	
Copper	mg/kg	1	Metals-020	[NT]	13	7	7	0	112	112	
Lead	mg/kg	1	Metals-020	[NT]	13	17	18	6	113	107	
Mercury	mg/kg	0.1	Metals-021	[NT]	13	0.1	0.1	0	103	92	
Nickel	mg/kg	1	Metals-020	[NT]	13	2	2	0	104	109	
Zinc	mg/kg	1	Metals-020	[NT]	13	13	13	0	109	108	

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	21	28/10/2019	28/10/2019		[NT]	[NT]
Date analysed	-			[NT]	21	28/10/2019	28/10/2019		[NT]	[NT]
Arsenic	mg/kg	4	Metals-020	[NT]	21	10	11	10	[NT]	[NT]
Cadmium	mg/kg	0.4	Metals-020	[NT]	21	<0.4	<0.4	0	[NT]	[NT]
Chromium	mg/kg	1	Metals-020	[NT]	21	5	6	18	[NT]	[NT]
Copper	mg/kg	1	Metals-020	[NT]	21	8	7	13	[NT]	[NT]
Lead	mg/kg	1	Metals-020	[NT]	21	17	16	6	[NT]	[NT]
Mercury	mg/kg	0.1	Metals-021	[NT]	21	0.2	0.2	0	[NT]	[NT]
Nickel	mg/kg	1	Metals-020	[NT]	21	2	2	0	[NT]	[NT]
Zinc	mg/kg	1	Metals-020	[NT]	21	19	19	0	[NT]	[NT]

QUALITY	CONTROL:	Misc Soi			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	229219-3
Date prepared	-			28/10/2019	1	28/10/2019	28/10/2019		28/10/2019	28/10/2019
Date analysed	-			28/10/2019	1	28/10/2019	28/10/2019		28/10/2019	28/10/2019
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	1	<5	<5	0	103	107
QUALITY	CONTROL	Misc Soi	l - Inorg			Du	plicate		Spike Re	covery %
QUALITY Test Description	CONTROL: Units	Misc Soi PQL	I - Inorg Method	Blank	#	Du Base	plicate Dup.	RPD	Spike Re [NT]	covery % [NT]
QUALITY Test Description Date prepared	CONTROL: Units	Misc Soi PQL	I - Inorg Method	Blank [NT]	# 21	Du Base 28/10/2019	plicate Dup. 28/10/2019	RPD	Spike Re [NT] [NT]	covery % [NT] [NT]
QUALITY Test Description Date prepared Date analysed	CONTROL: Units -	Misc Soi PQL	I - Inorg Method	Blank [NT] [NT]	# 21 21	Du Base 28/10/2019 28/10/2019	plicate Dup. 28/10/2019 28/10/2019	RPD	Spike Re [NT] [NT]	COVERY % [NT] [NT]

QUALITY	CONTROL	: Misc Ino		Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			28/10/2019	3	28/10/2019	28/10/2019		28/10/2019	[NT]
Date analysed	-			28/10/2019	3	28/10/2019	28/10/2019		28/10/2019	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	3	6.0	6.0	0	102	[NT]
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	3	14	15	7	101	[NT]

QUALITY	CONTROL	: Misc Ino		Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date prepared	-			[NT]	11	28/10/2019	28/10/2019		28/10/2019	[NT]
Date analysed	-			[NT]	11	28/10/2019	28/10/2019		28/10/2019	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	11	6.1	6.1	0	102	[NT]
Electrical Conductivity 1:5 soil:water	μS/cm	1	Inorg-002	[NT]	11	10	9	11	100	[NT]

QUALITY	CONTROL	Misc Ino		Du		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	20	28/10/2019	28/10/2019		[NT]	[NT]
Date analysed	-			[NT]	20	28/10/2019	28/10/2019		[NT]	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	20	6.4	6.4	0	[NT]	[NT]
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	[NT]	20	11	11	0	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Nator Cuidalings recommand that Thermatelerant Caliform, Ecosal Entergagesi, & E. Cali Javala are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sam When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	Suburb: Bellevue Hill					To: EnviroLab								
Project Name:	Cranb	rook Schoo	l In-situ as	sessment	Order N	lumber					12	Ashley Str	eet, Chat	swood 2067
Project Manage	r:Peter	Oitmaa	<i>.</i> .		Sample	er:	Joel J-H	l		Attn:	Aile	en Hie		
Emails:	peter	.oitmaa@c	louglaspa	rtners.com	<u>au; joel.</u>	<u>james-h</u> a	all@dov(laspartr	ers.con	Phone:	(02)	9910 620	00	
Date Required:	<u> Şame</u>	day 🗸	24 hours	□ 48 ho	ours 🛛	72 hou	s 🖌 🔤	Standard		Émail:	<u>Ahi</u>	e@enviro	<u>olab.com</u>	<u>au</u>
Prior Storage:	d Esk	y 🗹 Fridq	je 🗆 Sh	elved	Do samp	oles contai	n 'potentia	<u>I' HBM?</u>	Yes B	No 🗆	(If YES, the	en handle, tr	ansport and	store in accordance with FPM HAZID)
		pled	Sample Type	Container Type		r		; } 	Analytes			, 		4
Sample ID	Lab ID	Date Sarr	S - soil W - water	G - glass P - plastic	Combo 8	Combo 3	AF/FA	pH, EC	Foreign Materials (ENM)					Notes/preservation
• TP1/0-0.3	ή	23/10/19	S	G/P	×			×	\times					
TP2/0.4-0.5	2	23/10/19	S	G/P		X		× χ	<u>></u>			ļ		
TP3/0.4-0.5	3	23/10/19	S	G/P	X			<u> </u>	×			ļ		
• TP4/0.4-0.5	4	23/10/19	S	G/P	Y		<u>ر X</u>	×	\succ					
	۰v	23/10/19	S	G/P	,	Ŕ	X	Υ	X			ยาง ที่เสือเค	B Charsen	12 Ashley St
TP8/4.6-4.8	5	23/10/19	S	G/P		×		· 7	¥				Ph: ((2) 9910 6200
TP9/0-0.3	7	23/10/19	s	G/P	×	·	Х,	1	7			<u> 105 KO.</u>	2292	19
。" TP10/0-0.3	8.	23/10/19	S	G/P	7		•	י א	×			Date Rec	eived: 2.6	Kola
, TP11/0-0.3	9	23/10/19	S	G/P	Y			X	7			Received	17 JOS	<u>P</u>
TP11/0.8-1.0	10	23/10/19	S	G/P		×	×	×	74		· •	Cooling:	cel lecce ek	
TP12/2.6-1.8	11	23/10/19	S	G/P		X	-7		. +			Security:	Intaci Broke	eh/None
TP12/3.6-3.8	R	23/10/19	S	G/P		×		×	<u> </u>					
TP13/0-0.3	13	23/10/19	S	G/P	X	، 	¥	<u>×</u>	\succ					
TP13/2.8-3.0	14	23/10/19	S	G/P	<u> </u>	X		X	\succ			L		·
TP14/0.4-0.5	К	23/10/19	S	G/P	<u> </u>	· · · · -		<u>×</u>	+					
					· ·			L	<u> </u>				C PQLs	req'd for all water analytes
PQL = practical quantitation limit. If none given, default to Laboratory Method Detection Limit Lab Report/Ref									ference N	lo: Z2	29219			
Metals to Analy	se: 8HN f samel	n uniess sp es in conta	ecified he	ere: . Rolin	nauished	by r	${2}$	Transpo	rted to la	 aboratory	hv:			//
Send Results to	<u>samp</u>	ounlas Part	ners Ptv11		ress		<u>ц</u> ,	·			~	Phone		Fax:
Signed:				Received b	v: 50	con De	the F	Le Stn		DATT	Date &	Time: (የወን	24/10/19
	igned: Received by: Jason Day ELS STN FLOT Date & Time: 1805 29/10/19													

, •

.

ς.

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

.

Project No:	84944	.02			Suburb: Bellevue Hill					To: EnviroLab				
Project Name:	Cranb	rook Schoo	l In-situ as	sessment	Order N	lumber				12 Ashley Street, Chatswood 2067				
Project Manage	r:Peter	Oitmaa			Sample	er:	Joel J-H	L		Attn:	Ailee	en Hie		
Emails:	peter	.oitmaa@d	louglaspa	rtners.com	<u>au; joel.</u>	<u>james-h</u> a	all@doug	laspartn	ers.con	Phone:	(02)	9910 62	00	
Date Required:	Şame	day 🛛	24 hours	🗆 48 ho	urs 🗆	72 hou	rs_[/	Standard	□	Email:	<u>Ahie</u>	e@envir	olab.com	<u>au</u>
Prior Storage:	🗹 Esk	y 🛛 🗹 Fridg	je 🗆 Sh	elved	Do samp	oles contai	n 'potential	HÊM?	Yes 🗹	No 🗆 ((If YES, the	n handle, t	ransport and	store in accordance with FPM HAZID)
		pled	Sample Type	Container Type			-		Analytes				.	
Sample ID	Lab ID	Date Sam	S - soil W - water	G - glass P - plastic	Combo 8	Combo 3	AF/FA	pH, EC	Foreign Materials (ENM)					Notes/preservation
TP15/0.4-0.6	16	23/10/19	S	G/P	X		ľΥ	×	×					
JTP16/04-06	14	23/10/19	S	G/P		×		¥	<u></u>				ļ	
• TP17/0-0.3	18	23/10/19	S	G/P	¥		X	¥	X				<u> </u>	
• ~TP17/0.4-0.5	19	23/10/19	S	G/P		X	ы́ Х_	Y	<u>×</u> _					
TP18/0.4-0.5	20	23/10/19	S	G/P		۲×	,	X	×				<u> </u>	
TP23/0-0.3	<u>zl</u>	23/10/19	S	G/P	\times		X	×	×					
TP23/0.4-0.6	22	23/10/19	S	G/P		<u>×</u>		×	×					
BD1/20191023	25 7	3/10/19	5	4		<u>×</u>		×	×					
BD2/20191023	2 <u>4</u> .	23/10/19	5	6		7		×	Ϋ́.					
TP2/0-0)	ĽS_	23/10/19	<u> </u>	P		``	X						<u>, 1</u>	
TP11-0-0-3	26	231019												
Extra Gha	• .													
			-						 					· · · · · · · · · · · · · · · · · · ·
			<u>-</u>	_			ļ							
PQL (S) mg/kg			<u>۰</u> ۳					tion Line)						
PQL = practical	quantit	tation limit.	If none g	liven, detauli		atory Met	noa Detec		[Lab Re	eport/Ref	erence l	No: 2	29219
Metals to Analys	se: 8HN f samp!	n uniess sp	iner:	ere: Relin	nauisher	l hv:		Transpo	rted to la	l aboratory	by:			
Send Results to	: D	ouglas Part	ners Ptv I :	td Add	ress:	·						Phone		Fax:
Signed:				Received b	<u>יייי</u> א: ז	iasan L	Dan E	Is Stin	th	200	Date & T	ime:	1803	24/10/19
							<u> </u>	-	~ \					.
FPM - ENVID/Form CO	OC 02	Page 2 of 2										Rev4/October2016		

1

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Joel James-Hall, Peter Oitmaa

Sample Login Details	
Your reference	84944.02, Cranbrook School In-Situ Assessment
Envirolab Reference	229219
Date Sample Received	24/10/2019
Date Instructions Received	24/10/2019
Date Results Expected to be Reported	29/10/2019

Sample ConditionSamples received in appropriate condition for analysisYesNo. of Samples Provided26 Soil			
Samples received in appropriate condition for analysis	Yes		
No. of Samples Provided	26 Soil		
Turnaround Time Requested	3 days		
Temperature on Receipt (°C)	9.0		
Cooling Method	Ice Pack		
Sampling Date Provided	YES		

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Misc Inorg - Soil	Asbestos ID - soils NEPM	RTA276 ENM*Foreign Material	On Hold
TP1/0-0.3	✓	✓	✓	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark		\checkmark	
TP2/0.4-0.5	\checkmark	\checkmark	\checkmark				\checkmark		\checkmark		\checkmark	
TP3/0.4-0.5	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓		✓	
TP4/0.4-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓	✓	\checkmark	\checkmark	
TP8/1.6-1.8	\checkmark	\checkmark	\checkmark				\checkmark		\checkmark	\checkmark	\checkmark	
TP8/4.6-4.8	\checkmark	\checkmark	\checkmark				\checkmark		\checkmark		\checkmark	
TP9/0-0.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
TP10/0-0.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
TP11/0-0.3	\checkmark	✓	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
TP11/1.8-1.0	\checkmark	\checkmark	\checkmark				\checkmark		\checkmark	\checkmark	\checkmark	
TP12/1.6-1.8	\checkmark	\checkmark	\checkmark				\checkmark		\checkmark		\checkmark	
TP12/3.6-3.8	\checkmark	✓	\checkmark				\checkmark		\checkmark		\checkmark	
TP13/0-0.3	\checkmark	✓	✓	\checkmark	\checkmark	\checkmark	✓	✓	\checkmark	\checkmark	\checkmark	
TP13/2.8-3.0	\checkmark	\checkmark	\checkmark				\checkmark		\checkmark		\checkmark	
TP14/0.4-0.5	\checkmark	✓	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
TP15/0.4-0.6	\checkmark	✓	✓	\checkmark	\checkmark	\checkmark	✓	✓	\checkmark	\checkmark	\checkmark	
TP16/0.4-0.6	\checkmark	✓	✓				✓		\checkmark		\checkmark	
TP17/0-0.3	\checkmark	✓	✓	✓	\checkmark	✓	✓	✓	✓	\checkmark	✓	
TP17/0.4-0.5	✓	✓	✓				✓		✓	\checkmark	\checkmark	
TP18/0.4-0.5	✓	✓	✓				✓		\checkmark		\checkmark	
TP23/0-0.3	\checkmark	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark	
TP23/0.4-0.6	\checkmark	\checkmark	\checkmark				\checkmark		\checkmark		\checkmark	
BD1/20191023	\checkmark	\checkmark	\checkmark				\checkmark					
BD2/20191023	✓	\checkmark	\checkmark				\checkmark					
TP2/0-0.3										\checkmark		
TP11/0-0.3												\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

email: sydney@envirolab.com.au **envirolab.com.au**

Envirolab Services Pty Ltd - Sydney | ABN 37 112 535 645

	CERTIFICATE OF ANALYS	IS	165	5477
Client:				
Douglas Partners Pty Ltd				
96 Hermitage Rd				
West Ryde				
NSW 2114				
Attention: Peter Oitmaa				
Sample log in details:				
Your Reference:		84944.01, Bellev	/ue	Hill
No. of samples:		30 soils		
Date samples received / comple	ted instructions received	19/04/17	1	19/04/17
Analysis Details:				
Please refer to the following page	ges for results, methodology	summary and qua	lity o	control data.
Samples were analysed as rece	eived from the client. Results	relate specifically	to tl	he samples as received.
Results are reported on a dry w	eight basis for solids and on a	an as received ba	sis f	or other matrices.
Please refer to the last page of	of this report for any comme	ents relating to tl	he re	esults.
Report Details:				
Date results requested by: / Iss	ue Date:	27/04/17	/	27/04/17

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing

 Tests not covered by NATA are denoted with *.

Results Approved By:

David Springer General Manager

ACCREDITED FOR TECHNICAL COMPETENCE

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	165477-1	165477-2	165477-3	165477-4	165477-5
Your Reference		BH101	BH101	BH102	BH102	BH103
	-					
Depth		0.5	4.0	0.5	2.0	0.1
Date Sampled		12/04/2017 Soil	12/04/2017 Soil	12/04/2017 Soil	12/04/2017 Soil	11/04/2017 Soil
		301	301	301	301	301
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	98	92	100	93	98
vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	165477-6	165477-7	165477-8	165477-9	165477-10
Your Reference		BH103	BH104	BH105	BH111	BH111
Depth	-	1.0	1.0	1.0	0 45-0 5	29-30
Date Sampled		11/04/2017	12/04/2017	10/04/2017	13/04/2017	13/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C 10 less BTEX	mg/kg	<25	<25	<25	<25	<25
(F1)	00					
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
nanhthalana				1		
napitulalelle	mg/kg	<1	<1	<1	<1	<1

Our Poference:	LINITS	165477 11	165477 10	165477 12	165477 14	165477 15
Vour Reference.	UNITS	DU112	DU112	DU111	DU115	DU116
		DITIZ	DITIS	DITIT	BITTS	BITTO
Depth		0.5	1.0-1.05	1.0	0.1	1.0
DateSampled		11/04/2017	13/04/2017	11/04/2017	11/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	_	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
		20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
	mg/kg	<25	<25	<25	<25	<25
IRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	98	101	100	94	100
vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	165477-16	165477-17	165477-18	165477-19	165477-20
Your Reference		BH117	BH118	BH119	BH120	BH121
Dopth	-	1 05 2 0	0 1 0 15	0.5	0.5	1.0
Date Sampled		13/04/2017	13/04/2017	0.5	0.5	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
		20/04/2047	20/04/2047	20/04/2047	20/04/2017	20/04/2017
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	I _		-1	-1	-1	-1
rotar ve Aylenes	mg/kg	<1	<1			1
naphthalene	mg/kg mg/kg	<1 <1	<1	<1	<1	<1

VTRH(C6-C10)/BTEXNin Soil						
Our Reference:		165477-21	165477-22	165477-23	165477-24	165477-25
Your Reference		BH122	BH123	BH124	BH125	BH126
	-	DITIZZ	DITI20	DITIZA	DITIZO	DITIZO
Depth		1.0	0.5	0.1	0.5	2.0
DateSampled		11/04/2017	11/04/2017	10/04/2017	10/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (E1)	mg/kg	<25	<25	<25	<25	<25
Benzene	ma/ka	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylhonzono	mg/kg	-0.0	<0.5	<0:5	<0.5	-0.0
Ethyldenzene	mg/kg	~1	~1	~1	~1	~1
m+p-xylene	mg/кg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	101	98	100	94	91
				[
vTRH(C6-C10)/BTEXN in Soil		405477.00	405477.07	405477.00	405477.00	405477.00
Our Reference:	UNITS	165477-26	165477-27	165477-28	165477-29	165477-30
four Reierence		BH127	BH128	BH129	BH129	BH130
Depth		0.5	1.0	0.5	2.0	0.1
DateSampled		11/04/2017	12/04/2017	10/04/2017	10/04/2017	10/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	21/04/2017	21/04/2017
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 lessBTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
a subthe store s	ma/ka	<1	<1	<1	<1	<1

%

94

87

96

96

Surrogate aaa-Trifluorotoluene

94

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	165477-1	165477-2	165477-3	165477-4	165477-5
Your Reference		BH101	BH101	BH102	BH102	BH103
	-					
Depth		0.5	4.0	0.5	2.0	0.1
Date Sampled		12/04/2017	12/04/2017	12/04/2017	12/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	84	84	85	82	87
	1		I	I	I	
svTRH (C10-C40) in Soil						
Our Reference:	UNITS	165477-6	165477-7	165477-8	165477-9	165477-10
Your Reference		BH103	BH104	BH105	BH111	BH111
Depth		1.0	1.0	1.0	0.45-0.5	2 9-3 0
DateSampled		11/04/2017	12/04/2017	10/04/2017	13/04/2017	13/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	83	83	84	83	82

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	165477-11	165477-12	165477-13	165477-14	165477-15
Your Reference		BH112	BH113	BH114	BH115	BH116
	-					
Depth		0.5	1.0-1.05	1.0	0.1	1.0
Date Sampled		11/04/2017	13/04/2017	11/04/2017	11/04/2017	11/04/2017
		501	501	501	501	501
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	21/04/2017
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	82	84	85	84	81
svTRH (C10-C40) in Soil						
Our Reference:	UNITS	165477-16	165477-17	165477-18	165477-19	165477-20
Your Reference		BH117	BH118	BH119	BH120	BH121
Depth	-	1 95-2 0	0 1-0 15	0.5	0.5	1.0
Date Sampled		13/04/2017	13/04/2017	10/04/2017	11/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
 Date extracted	_	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
		21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
	ma/ka	<50	<50	<50	<50	<50
	mg/kg	<100	<100	<100	<100	<100
	mg/kg	<100	<100	<100	<100	<100
IRHC29 - C36	тıg/кg	<100	<100	<100	< 100	<100
IRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	83	81	83	81	83

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	165477-21	165477-22	165477-23	165477-24	165477-25
Your Reference		BH122	BH123	BH124	BH125	BH126
	-					
Depth		1.0	0.5	0.1	0.5	2.0
Date Sampled		11/04/2017	11/04/2017	10/04/2017	10/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C 10-C 16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	86	82	83	82	83
svTRH (C10-C40) in Soil						
Our Reference:	UNITS	165477-26	165477-27	165477-28	165477-29	165477-30
Your Reference		BH127	BH128	BH129	BH129	BH130
Depth		0.5	1.0	0.5	2.0	0.1
Date Sampled		11/04/2017	12/04/2017	10/04/2017	10/04/2017	10/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Total+veTRH(>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	84	84	86	85	86

PAHs in Soil						
Our Reference:	UNITS	165477-1	165477-2	165477-3	165477-4	165477-5
Your Reference		BH101	BH101	BH102	BH102	BH103
Donth	-	0.5	4.0	0.5	2.0	0.1
Depui Date Sampled		0.5	4.0	0.5	2.0	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	_	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.6	<0.1	0.2	<0.1	<0.1
Pyrene	mg/kg	0.5	<0.1	0.3	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.3	<0.1	0.2	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.5	<0.2	0.3	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.3	<0.05	0.2	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.3	<0.1	0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	3.0	<0.05	1.2	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	97	90	94	93	99

PAHs in Soil						
Our Reference:	UNITS	165477-6	165477-7	165477-8	165477-9	165477-10
Your Reference		BH103	BH104	BH105	BH111	BH111
	-					
Depth		1.0	1.0	1.0	0.45-0.5	2.9-3.0
Date Sampled		11/04/2017	12/04/2017	10/04/2017	13/04/2017	13/04/2017
		501	501	501	501	501
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	95	92	92	95	94

PAHs in Soil						
Our Reference:	UNITS	165477-11	165477-12	165477-13	165477-14	165477-15
Your Reference		BH112	BH113	BH114	BH115	BH116
Depth	-	0.5	1.0-1.05	1.0	0.1	1.0
Date Sampled		11/04/2017	13/04/2017	11/04/2017	11/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	98	93	95	93	92

PAHs in Soil						
Our Reference:	UNITS	165477-16	165477-17	165477-18	165477-19	165477-20
Your Reference		BH117	BH118	BH119	BH120	BH121
Dopth	-	1 05 2 0	0 1 0 15	0.5	0.5	1.0
Depth Date Sampled		13/04/2017	13/04/2017	0.5	0.5	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
 Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.06	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	0.2	0.78	<0.05	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	94	94	95	97	91

PAHs in Soil		105 177 01	105 (55 00	105 (55 00	105 (55.04	
Our Reference:	UNITS	165477-21	165477-22	165477-23	165477-24	165477-25
Your Reference		BH122	BH123	BH124	BH125	BH126
Depth		1.0	0.5	0.1	0.5	2.0
Date Sampled		11/04/2017	11/04/2017	10/04/2017	10/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.1	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	0.59	<0.05	<0.05
Surrogate p-Terphenyl-d14	%	93	91	98	93	91

PAHs in Soil						
Our Reference:	UNITS	165477-26	165477-27	165477-28	165477-29	165477-30
Your Reference		BH127	BH128	BH129	BH129	BH130
	-					
Depth		0.5	1.0	0.5	2.0	0.1
Date Sampled		11/04/2017 Soil	12/04/2017 Soil	10/04/2017 Soil	10/04/2017 Soil	10/04/2017 Soil
		301	301	301	301	301
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	0.5
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	0.2
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	2.3
Surrogate p-Terphenyl-d14	%	97	93	97	93	93

Organochlorine Pesticides in soil						
Our Reference:	UNITS	165477-1	165477-2	165477-3	165477-4	165477-5
Your Reference		BH101	BH101	BH102	BH102	BH103
Depth		0.5	4.0	0.5	2.0	0.1
Date Sampled		12/04/2017 Soil	12/04/2017 Soil	12/04/2017 Soil	12/04/2017 Soil	11/04/2017 Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	99	102	100	99	99

Organochlorine Pesticides in soil						
Our Reference:	UNITS	165477-6	165477-7	165477-8	165477-9	165477-10
Your Reference		BH103	BH104	BH105	BH111	BH111
Depth Date Sampled Type of sample		1.0 11/04/2017 Soil	1.0 12/04/2017 Soil	1.0 10/04/2017 Soil	0.45-0.5 13/04/2017 Soil	2.9-3.0 13/04/2017 Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	102	96	98	99

Organochlorine Pesticides in soil						
Our Reference:	UNITS	165477-11	165477-12	165477-13	165477-14	165477-15
Your Reference		BH112	BH113	BH114	BH115	BH116
Depth Date Sampled Type of sample		0.5 11/04/2017 Soil	1.0-1.05 13/04/2017 Soil	1.0 11/04/2017 Soil	0.1 11/04/2017 Soil	1.0 11/04/2017 Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	97	98	98	97

Organochlorine Pesticides in soil						
Our Reference:	UNITS	165477-16	165477-17	165477-18	165477-19	165477-20
Your Reference		BH117	BH118	BH119	BH120	BH121
Donth	-	1 05 2 0	0 1 0 15	0.5	0.5	1.0
Depin Date Sampled		13/04/2017	0.1-0.15	0.5	0.5	1.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	94	100	96	95

Organochlorine Pesticides in soil						
Our Reference:	UNITS	165477-21	165477-22	165477-23	165477-24	165477-25
Your Reference		BH122	BH123	BH124	BH125	BH126
Depth	-	1.0	0.5	0.1	0.5	2.0
Date Sampled		11/04/2017	11/04/2017	10/04/2017	10/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	99	103	97	99	99

Organochlorine Pesticides in soil						
Our Reference:	UNITS	165477-26	165477-27	165477-28	165477-29	165477-30
Your Reference		BH127	BH128	BH129	BH129	BH130
Denth	-	0.5	1.0	0.5	2.0	0.1
Depin Date Sampled		0.5	12/04/2017	0.5	2.0	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
 Date extracted	_	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total+veDDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	101	99	100	96

Organophosphorus Pesticides						
Our Reference:	UNITS	165477-1	165477-2	165477-3	165477-4	165477-5
Your Reference		BH101	BH101	BH102	BH102	BH103
Depth		0.5	4.0	0.5	2.0	0.1
DateSampled		12/04/2017	12/04/2017	12/04/2017	12/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	99	102	100	99	99
Orner en haarde en a Daatieidae	Γ					
Organophosphorus Pesticides	LINITS	165477-6	165477-7	165477-8	165477-9	165477-10
Your Reference		BH103	BH104	BH105	BH111	BH111
	-					
Depth		1.0	1.0	1.0	0.45-0.5	2.9-3.0
Date Sampled		11/04/2017 Soil	12/04/2017 Soil	10/04/2017 Soil	13/04/2017 Soil	13/04/2017 Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
		~~	400	00	00	00

Client Reference: 84944.

			1	1	1	
Organophosphorus Pesticides						
Our Reference:	UNITS	165477-11 PU112	165477-12 PU112	165477-13 DU114	165477-14 DU115	165477-15 PU116
Tour Reference		DHTZ	БПТЗ	DE114	БПТБ	БПТЮ
Depth		0.5	1.0-1.05	1.0	0.1	1.0
Date Sampled		11/04/2017	13/04/2017	11/04/2017	11/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	97	98	98	97
			I	I	I	I
Organophosphorus Pesticides		105177 10		105 177 10	105177.10	405 477 00
Our Reference:	UNITS	165477-16 BU117	165477-17 BU118	165477-18 BU110	165477-19 BH120	165477-20 BH121
	-		BITTO	DITTS	DITIZO	DITIZT
Depth		1.95-2.0	0.1-0.15	0.5	0.5	1.0
Date Sampled		13/04/2017	13/04/2017	10/04/2017	11/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	ma/ka	<0.1	<0.1	<0.1	<0.1	<0.1

Organophosphorus Pesticides						
Our Reference:	UNITS	165477-21	165477-22	165477-23	165477-24	165477-25
Your Reference		BH122	BH123	BH124	BH125	BH126
	-					
Depth		1.0	0.5	0.1	0.5	2.0
Date Sampled		11/04/2017 Soil	11/04/2017 Soil	10/04/2017 Soil	10/04/2017 Soil	12/04/2017 Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	99	103	97	99	99
Organophosphorus Pesticides						
Our Reference:	UNITS	165477-26	165477-27	165477-28	165477-29	165477-30
Your Reference		BH127	BH128	BH129	BH129	BH130
Depth		0.5	1.0	0.5	2.0	0.1
Date Sampled		11/04/2017	12/04/2017	10/04/2017	10/04/2017	10/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	101	99	100	96

PCBs in Soil		165477 1	165477.0	165477.0	165477 4	165477 F
Your Reference	UNI 5	BH101	165477-2 BH101	BH102	BH102	BH103
	-	Differ	Differ	Birroz	BITTOL	Billio
Depth		0.5	4.0	0.5	2.0	0.1
Date Sampled		12/04/2017	12/04/2017	12/04/2017	12/04/2017	11/04/2017
I ype of sample		Soll	Soll	Soll	Soli	Soli
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	99	102	100	99	99
PCBs in Soil						
Our Reference:	UNITS	165477-6	165477-7	165477-8	165477-9	165477-10
Your Reference		BH103	BH104	BH105	BH111	BH111
Depth		1.0	1.0	1.0	0.45-0.5	2.9-3.0
Date Sampled		11/04/2017	12/04/2017	10/04/2017	13/04/2017	13/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	98	102	96	98	99

PCBs in Soil						
Our Reference:	UNITS	165477-11	165477-12	165477-13	165477-14	165477-15
Your Reference		BH112	BH113	BH114	BH115	BH116
Denth	-	0.5	1.0.1.05	1.0	0.1	1.0
Deptin Data Sampled		0.5	12/04/2017	11/04/2017	0.1	11/04/2017
Type of sample		11/04/2017 Soil	13/04/2017 Soil	11/04/2017 Soil	11/04/2017 Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	98	97	98	98	97
PCBs in Soil						
Our Reference:	UNITS	165477-16	165477-17	165477-18	165477-19	165477-20
Your Reference		BH117	BH118	BH119	BH120	BH121
Dopth	-	1 05 2 0	0 1 0 15	0.5	0.5	1.0
Depili Date Sampled		13/04/2017	13/04/2017	0.5	0.5	12/04/2017
Type of sample		13/04/2017 Soil	13/04/2017 Soil	10/04/2017 Soil	Soil	12/04/2017 Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	100	94	100	96	95

PCBs in Soil						
Our Reference:	UNITS	165477-21	165477-22	165477-23	165477-24	165477-25
Your Reference		BH122	BH123	BH124	BH125	BH126
Donth	-	1.0	0.5	0.1	0.5	2.0
Date Sampled		11/04/2017	0.5	0.1	0.5	2.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Dete sutre sted		00/04/0047	00/04/0047	00/04/0047	00/04/0047	00/04/0047
	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	99	103	97	99	99
	1	I		I	I	· · · · · · · · · · · · · · · · · · ·
PCBs in Soil						
Our Reference:	UNITS	165477-26	165477-27	165477-28	165477-29	165477-30
Your Reference		BH127	BH128	BH129	BH129	BH130
Depth		0.5	1.0	0.5	2.0	0.1
Date Sampled		11/04/2017	12/04/2017	10/04/2017	10/04/2017	10/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	100	101	99	100	96

Acid Extractable metals in soil Our Reference: Your Reference	UNITS	165477-1 BH101	165477-2 BH101	165477-3 BH102	165477-4 BH102	165477-5 BH103
Depth Date Sampled Type of sample		0.5 12/04/2017 Soil	4.0 12/04/2017 Soil	0.5 12/04/2017 Soil	2.0 12/04/2017 Soil	0.1 11/04/2017 Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Arsenic	mg/kg	6	<4	11	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	2	1	7	1	42
Copper	mg/kg	18	2	18	2	15
Lead	mg/kg	22	<1	28	3	14
Mercury	mg/kg	<0.1	<0.1	0.3	<0.1	<0.1
Nickel	mg/kg	1	<1	3	<1	21
Zinc	mg/kg	12	2	24	3	24
Acid Extractable metals in soil Our Reference: Your Reference	UNITS	165477-6 BH103	165477-7 BH104	165477-8 BH105	165477-9 BH111	165477-10 BH111
Denth	-	1.0	1.0	1.0	0.45-0.5	2 9-3 0

Depth Date Sampled Type of sample		1.0 11/04/2017 Soil	1.0 12/04/2017 Soil	1.0 10/04/2017 Soil	0.45-0.5 13/04/2017 Soil	2.9-3.0 13/04/2017 Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	<1	1	1	<1	1
Copper	mg/kg	2	<1	3	<1	<1
Lead	mg/kg	<1	2	3	1	3
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	<1	<1	<1
Zinc	mg/kg	3	4	4	1	2

Acid Extractable metals in soil						
Our Reference:	UNITS	165477-11	165477-12	165477-13	165477-14	165477-15
Your Reference		BH112	BH113	BH114	BH115	BH116
	-					
Depth		0.5	1.0-1.05	1.0	0.1	1.0
Date Sampled		11/04/2017 Soil	13/04/2017 Soil	11/04/2017 Soil	11/04/2017 Soil	11/04/2017 Soil
		301	301	301	301	301
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Arsenic	mg/kg	<4	41	<4	14	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	0.6
Chromium	mg/kg	4	1	2	5	<1
Copper	mg/kg	4	2	1	5	1
Lead	mg/kg	10	2	3	6	7
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	<1	<1	3	<1
Zinc	mg/kg	11	4	4	16	3
Acid Extractable metals in soil						
Our Reference:	UNITS	165477-16	165477-17	165477-18	165477-19	165477-20
Your Reference		BH117	BH118	BH119	BH120	BH121
Death	-	4 05 0 0	0.4.0.45	0.5	0.5	10
Deptn Dete Sampled		1.95-2.0	0.1-0.15	0.5	0.5	1.0
Type of sample		13/04/2017 Soil	13/04/2017 Soil	10/04/2017 Soil	Soil	12/04/2017 Soil
					00.10.1.100.1.7	
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Arsenic	mg/kg	<4	5	<4	9	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	1	4	<1	8	1
Copper	mg/kg	3	5	2	7	2
Lead	mg/kg	7	11	2	16	3
Mercury	mg/kg	<0.1	0.2	<0.1	0.1	<0.1
Nickel	mg/kg	<1	2	<1	3	<1
Zinc	mg/kg	6	9	5	17	7

Client Reference: 84944.01,

84944.01, Bellevue Hill

Acid Extractable metals in soil						
Our Reference:	UNITS	165477-21	165477-22	165477-23	165477-24	165477-25
Your Reference		BH122	BH123	BH124	BH125	BH126
	-					
Depth		1.0	0.5	0.1	0.5	2.0
Date Sampled		11/04/2017	11/04/2017	10/04/2017	10/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Arsenic	mg/kg	<4	<4	5	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	8	<1	4	2	<1
Copper	mg/kg	4	1	5	7	1
Lead	mg/kg	6	3	12	4	2
Mercury	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Nickel	mg/kg	8	<1	2	2	<1
Zinc	mg/kg	7	2	13	9	3
			I			I
Acid Extractable metals in soil						
Our Reference:	UNITS	165477-26	165477-27	165477-28	165477-29	165477-30
Your Reference		BH127	BH128	BH129	BH129	BH130
Dooth	-	0.5	1.0	0.5	2.0	0.1
Deptil Data Sampled		0.0	1.0	0.0	2.0	0.1
Type of sample		11/04/2017 Soil	12/04/2017 Soil	10/04/2017 Soil	10/04/2017 Soil	10/04/2017 Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Arsenic	mg/kg	<4	<4	<4	<4	19

<0.4

1

2

1

<0.1

<1

5

<0.4

2

2

2

<0.1

1

12

<0.4

2

<1

1

<0.1

<1

1

0.5

9

19

50

<0.1

4

42

Cadmium

Chromium

Copper

Lead

Mercury

Nickel

Zinc

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

<0.4

1

2

3

<0.1

1

13

Acid Extractable metals in soil				
Our Reference:	UNITS	165477-31	165477-32	165477-33
Your Reference		BH101 -	BH112-	BH122 -
	-	[TRIPLICATE]	[TRIPLICATE]	[TRIPLICATE]
Depth		0.5	0.5	1.0
Date Sampled		12/04/2017	11/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017
Arsenic	mg/kg	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	2	2	53
Copper	mg/kg	14	1	5
Lead	mg/kg	11	7	6
Mercury	mg/kg	<0.1	<0.1	<0.1
Nickel	mg/kg	1	<1	16
Zinc	mg/kg	7	6	8

Client Reference: 84944.01

Misc Soil - Inorg						
Our Reference:	UNITS	165477-1	165477-2	165477-3	165477-4	165477-5
Your Reference		BH101	BH101	BH102	BH102	BH103
	-					
Depth		0.5	4.0	0.5	2.0	0.1
Date Sampled		12/04/2017	12/04/2017	12/04/2017	12/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference:	UNITS	165477-6	165477-7	165477-8	165477-9	165477-10
Your Reference		BH103	BH104	BH105	BH111	BH111
	-					
Depth		1.0	1.0	1.0	0.45-0.5	2.9-3.0
Date Sampled		11/04/2017	12/04/2017	10/04/2017	13/04/2017	13/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference:	UNITS	165477-11	165477-12	165477-13	165477-14	165477-15
Your Reference		BH112	BH113	BH114	BH115	BH116
	-					
Depth		0.5	1.0-1.05	1.0	0.1	1.0
Date Sampled		11/04/2017	13/04/2017	11/04/2017	11/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
	-					
Misc Soil - Inorg						
Our Reference:	UNITS	165477-16	165477-17	165477-18	165477-19	165477-20
Your Reference		BH117	BH118	BH119	BH120	BH121
	-					
Depth		1.95-2.0	0.1-0.15	0.5	0.5	1.0
Date Sampled		13/04/2017	13/04/2017	10/04/2017	11/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Misc Soil - Inorg						
Our Reference:	UNITS	165477-21	165477-22	165477-23	165477-24	165477-25
Your Reference		BH122	BH123	BH124	BH125	BH126
	-					
Depth		1.0	0.5	0.1	0.5	2.0
Date Sampled		11/04/2017	11/04/2017	10/04/2017	10/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
		20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference:	UNITS	165477-26	165477-27	165477-28	165477-29	165477-30
Your Reference		BH127	BH128	BH129	BH129	BH130
	-					
Depth		0.5	1.0	0.5	2.0	0.1
Date Sampled		11/04/2017	12/04/2017	10/04/2017	10/04/2017	10/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
	ma/ka	-5	-5	-5	-5	-5
rotal Phenolics (as Phenol)	тту/ку	?	\$?	2	~>

N 1 1						
Moisture		405477.4	405477.0	405477.0	405477 4	
Our Reference:	UNITS	165477-1	165477-2	165477-3	165477-4	165477-5
Your Reference		BHIUI	BHIUI	BH102	BH102	BH103
Denth		0.5	4.0	0.5	2.0	0.1
Date Sampled		12/04/2017	12/04/2017	12/04/2017	12/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
		20/04/2017	20/04/2047	20/04/2017	20/04/2017	20/04/2017
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Moisture	%	9.7	9.7	15	18	20
Moisturo						
Our Reference:		165477 6	165477 7	165477 9	165477.0	165477 10
Vour Reference.	UNITS	DU102	DU104	DU105	DU111	DU111
four Relefence		BH103	DI 104		DUII	DUIII
Depth		1.0	1.0	1.0	0.45-0.5	2.9-3.0
DateSampled		11/04/2017	12/04/2017	10/04/2017	13/04/2017	13/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
 Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Moisture	%	5.5	9.0	17	5.6	5.5
Moisture						
Our Reference:	UNITS	165477-11	165477-12	165477-13	165477-14	165477-15
Your Reference		BH112	BH113	BH114	BH115	BH116
	-					
Depth		0.5	1.0-1.05	1.0	0.1	1.0
Date Sampled		11/04/2017	13/04/2017	11/04/2017	11/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Moisture	%	6.7	4.0	5.1	15	10
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Г	
Moisture						
Our Reference:	UNITS	165477-16	165477-17	165477-18	165477-19	165477-20
Your Reference		BH117	BH118	BH119	BH120	BH121
Depth	-	1.95-2.0	0 1-0 15	0.5	0.5	1.0
Date Sampled		13/04/2017	13/04/2017	10/04/2017	11/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	_	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Moisture	%	6.3	15	4.0	95	19

Moisture Our Reference: Your Reference	UNITS	165477-21 BH122	165477-22 BH123	165477-23 BH124	165477-24 BH125	165477-25 BH126
Depth		1.0	0.5	0.1	0.5	2.0
Date Sampled		11/04/2017	11/04/2017	10/04/2017	10/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed	-	21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Moisture	%	5.0	4.4	9.2	6.3	20
Moisture						
Our Reference:	UNITS	165477-26	165477-27	165477-28	165477-29	165477-30
Your Reference		BH127	BH128	BH129	BH129	BH130
Depth		0.5	1.0	0.5	2.0	0.1
Date Sampled		11/04/2017	12/04/2017	10/04/2017	10/04/2017	10/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/04/2017	20/04/2017	20/04/2017	20/04/2017	20/04/2017
Date analysed		21/04/2017	21/04/2017	21/04/2017	21/04/2017	21/04/2017
Moisture	%	4.1	20	6.2	7.0	15

Asbestos ID - soils						
Our Reference:	UNITS	165477-1	165477-2	165477-3	165477-4	165477-5
Your Reference		BH101	BH101	BH102	BH102	BH103
	-					
Depth		0.5	4.0	0.5	2.0	0.1
Date Sampled		12/04/2017	12/04/2017	12/04/2017	12/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
 Date analysed	-	26/04/2017	26/04/2017	26/04/2017	26/04/2017	26/04/2017
Sample mass tested	g	Approx. 40g	Approx. 30g	Approx. 40g	Approx. 35g	Approx. 40g
Sample Description	-	Brown sandy	Brown sandy	Brown sandy	Brown sandy	Brown
		soil	soil	soil	soil	coarse-grained
						soil & rocks
Asbestos ID in soil	-	No asbestos				
		detected at				
		reporting limit of	reporting limit of	reporting limit of	reporting limit of	reporting limit of
		0.1g/Kg	0.1g/Kg	0.1g/Kg	0.1g/Kg	0.1g/kg
		organic libres	detected	detected	detected	organic libres
- .		uelecieu	uelecieu	uelecieu	uelecieu	uelecieu
Trace Analysis	-	No asbestos				
		delected	delected	delected	delected	delected
Ashastas ID, asila						
Asbestos ID - solis		105477.0	105 477 7	105477.0	105477.0	105477 10
Our Reference:	UNITS	105477-0	105477-7	100477-8	105477-9 DU444	1004/7-10 DU444
Your Reference		BH103	BH104	BH105	BHIII	BH111
Depth	-	1.0	1.0	1.0	0 45 0 5	2030
Depin Data Sampled		11/04/2017	12/04/2017	1.0	12/04/2017	2.9-3.0
Type of sample		Soil	12/04/2017 Soil	10/04/2017 Soil	13/04/2017 Soil	13/04/2017 Soil
Date analysed	-	26/04/2017	26/04/2017	26/04/2017	26/04/2017	26/04/2017
Sample mass tested	g	Approx. 35g	Approx. 20g	Approx. 40g	Approx. 30g	Approx. 30g
Sample Description	-	Brown sandy				
		soil	soil	soil	soil	soil
Asbestos ID in soil	-	No asbestos				
		detected at				
		reporting limit of	reporting limit of	reporting limit of	reporting limit of	reporting limit of
		U.1g/kg	U.1g/kg	U.1g/kg	U.1g/kg	U.1g/kg
		Organic fibres				
- <u> </u>						
I race Analysis	-	No asbestos				
		aetected	detected	aetected	aetected	aetected

Asbestos ID - soils Our Reference: Your Reference	UNITS	165477-11 BH112	165477-12 BH113	165477-13 BH114	165477-14 BH115	165477-15 BH116
Depth Date Sampled Type of sample		0.5 11/04/2017 Soil	1.0-1.05 13/04/2017 Soil	1.0 11/04/2017 Soil	0.1 11/04/2017 Soil	1.0 11/04/2017 Soil
 Date analysed	-	26/04/2017	26/04/2017	26/04/2017	26/04/2017	26/04/2017
Sample mass tested	g	Approx. 40g	Approx. 30g	Approx. 30g	Approx. 30g	Approx. 30g
Sample Description	-	Brown sandy soil				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected				
Asbestos ID - solis		165477 16	165477 17	165477 19	165477 10	165477 20
Your Reference		BH117	BH118	BH119	BH120	BH121
Depth		1.95-2.0	0.1-0.15	0.5	0.5	1.0
Date Sampled		13/04/2017	13/04/2017	10/04/2017	11/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	26/04/2017	26/04/2017	26/04/2017	26/04/2017	26/04/2017
Sample mass tested	g	Approx. 30g	Approx. 30g	Approx. 50g	Approx. 50g	Approx. 40g
Sample Description	-	Brown sandy soil				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected				
Asbestos ID - soils Our Reference: Your Reference	UNITS	165477-21 BH122	165477-22 BH123	165477-23 BH124	165477-24 BH125	165477-25 BH126
---	-------	---	---	---	---	---
Depth Date Sampled Type of sample		1.0 11/04/2017 Soil	0.5 11/04/2017 Soil	0.1 10/04/2017 Soil	0.5 10/04/2017 Soil	2.0 12/04/2017 Soil
Date analysed	-	26/04/2017	26/04/2017	26/04/2017	26/04/2017	26/04/2017
Sample mass tested	g	Approx. 30g	Approx. 30g	Approx. 50g	Approx. 40g	Approx. 40g
Sample Description	-	Brown sandy soil				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected				
	1					
Asbestos ID - solls		165477.06	165477.07	165477 09	165477 00	165477 20
Your Reference		BH127	BH128	BH129	BH129	BH130
Depth	-	0.5	1.0	0.5	2.0	0.1
DateSampled		11/04/2017	12/04/2017	10/04/2017	10/04/2017	10/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	26/04/2017	26/04/2017	26/04/2017	26/04/2017	26/04/2017
Sample mass tested	g	Approx. 30g	Approx. 40g	Approx. 40g	Approx. 35g	Approx. 35g
Sample Description	-	Brown sandy soil				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected				

Misc Inorg - Soil						
Our Reference:	UNITS	165477-1	165477-2	165477-3	165477-4	165477-5
Your Reference		BH101	BH101	BH102	BH102	BH103
	-					
Depth		0.5	4.0	0.5	2.0	0.1
Date Sampled		12/04/2017	12/04/2017	12/04/2017	12/04/2017	11/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/04/2017	22/04/2017	22/04/2017	22/04/2017	22/04/2017
Date analysed	-	22/04/2017	22/04/2017	22/04/2017	22/04/2017	22/04/2017
	nH Unito	6.4	6 1	6.2	60	5.2
	promis	0.4	0.1	0.2	0.0	5.5
Electrical Conductivity 1:5	µS/cm	22	8	27	9	200
soll.water						
Misc Inorg - Soli		405477.0	105177.7	405477.0	405477.0	405477.40
Our Reference:	UNITS	165477-6	165477-7	165477-8	165477-9	165477-10
Your Reference		BH103	BH104	BH105	BH111	BH111
Death	-	1.0	1.0	1.0	0.45.0.5	2020
Depth Deta Semalad		1.0	1.0	1.0	0.45-0.5	2.9-3.0
Type of sample		11/04/2017 Soil	12/04/2017 Soil	10/04/2017 Soil	13/04/2017 Soil	13/04/2017 Soil
		301	301		301	501
Date prepared	-	22/04/2017	22/04/2017	22/04/2017	22/04/2017	22/04/2017
Date analysed	-	22/04/2017	22/04/2017	22/04/2017	22/04/2017	22/04/2017
pH 1:5 soil:water	pH Units	5.7	5.8	6.5	6.3	6.1
Electrical Conductivity 1:5	uS/cm	31	11	18	12	10
soil water	μο/οπ	51	11	10	12	10
Misc Inorg - Soil						
incomergi com						
Our Reference:	UNITS	165477-11	165477-12	165477-13	165477-14	165477-15
Our Reference: Your Reference	UNITS	165477-11 BH112	165477-12 BH113	165477-13 BH114	165477-14 BH115	165477-15 BH116
Our Reference: Your Reference	UNITS 	165477-11 BH112	165477-12 BH113	165477-13 BH114	165477-14 BH115	165477-15 BH116
Our Reference: Your Reference Depth	UNITS 	165477-11 BH112 0.5	165477-12 BH113 1.0-1.05	165477-13 BH114 1.0	165477-14 BH115 0.1	165477-15 BH116 1.0
Our Reference: Your Reference Depth Date Sampled	UNITS 	165477-11 BH112 0.5 11/04/2017	165477-12 BH113 1.0-1.05 13/04/2017	165477-13 BH114 1.0 11/04/2017	165477-14 BH115 0.1 11/04/2017	165477-15 BH116 1.0 11/04/2017
Our Reference: Your Reference Depth Date Sampled Type of sample	UNITS 	165477-11 BH112 0.5 11/04/2017 Soil	165477-12 BH113 1.0-1.05 13/04/2017 Soil	165477-13 BH114 1.0 11/04/2017 Soil	165477-14 BH115 0.1 11/04/2017 Soil	165477-15 BH116 1.0 11/04/2017 Soil
Our Reference: Your Reference Depth Date Sampled Type of sample	UNITS 	165477-11 BH112 0.5 11/04/2017 Soil	165477-12 BH113 1.0-1.05 13/04/2017 Soil	165477-13 BH114 1.0 11/04/2017 Soil	165477-14 BH115 0.1 11/04/2017 Soil	165477-15 BH116 1.0 11/04/2017 Soil
Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared	UNITS 	165477-11 BH112 0.5 11/04/2017 Soil 22/04/2017	165477-12 BH113 1.0-1.05 13/04/2017 Soil 22/04/2017	165477-13 BH114 1.0 11/04/2017 Soil 22/04/2017	165477-14 BH115 0.1 11/04/2017 Soil 22/04/2017	165477-15 BH116 1.0 11/04/2017 Soil 22/04/2017
Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed	UNITS	165477-11 BH112 0.5 11/04/2017 Soil 22/04/2017 22/04/2017	165477-12 BH113 1.0-1.05 13/04/2017 Soil 22/04/2017 22/04/2017	165477-13 BH114 1.0 11/04/2017 Soil 22/04/2017 22/04/2017	165477-14 BH115 0.1 11/04/2017 Soil 22/04/2017 22/04/2017	165477-15 BH116 1.0 11/04/2017 Soil 22/04/2017 22/04/2017
Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed pH 1:5 soil:water	UNITS - - pH Units	165477-11 BH112 0.5 11/04/2017 Soil 22/04/2017 22/04/2017 5.6	165477-12 BH113 1.0-1.05 13/04/2017 Soil 22/04/2017 22/04/2017 6.1	165477-13 BH114 1.0 11/04/2017 Soil 22/04/2017 22/04/2017 6.0	165477-14 BH115 0.1 11/04/2017 Soil 22/04/2017 22/04/2017 6.1	165477-15 BH116 1.0 11/04/2017 Soil 22/04/2017 22/04/2017 6.4
Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed pH 1:5 soil:water Electrical Conductivity 1:5	UNITS - - pH Units μS/cm	165477-11 BH112 0.5 11/04/2017 Soil 22/04/2017 22/04/2017 5.6 64	165477-12 BH113 1.0-1.05 13/04/2017 Soil 22/04/2017 22/04/2017 6.1 12	165477-13 BH114 1.0 11/04/2017 Soil 22/04/2017 22/04/2017 6.0 13	165477-14 BH115 0.1 11/04/2017 Soil 22/04/2017 22/04/2017 6.1 32	165477-15 BH116 1.0 11/04/2017 Soil 22/04/2017 22/04/2017 6.4 14
Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed pH 1:5 soil:water Electrical Conductivity 1:5 soil:water	UNITS - pH Units µS/cm	165477-11 BH112 0.5 11/04/2017 Soil 22/04/2017 22/04/2017 5.6 64	165477-12 BH113 1.0-1.05 13/04/2017 Soil 22/04/2017 22/04/2017 6.1 12	165477-13 BH114 1.0 11/04/2017 Soil 22/04/2017 22/04/2017 6.0 13	165477-14 BH115 0.1 11/04/2017 Soil 22/04/2017 22/04/2017 6.1 32	165477-15 BH116 1.0 11/04/2017 Soil 22/04/2017 22/04/2017 6.4 14
Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed pH 1:5 soil:water Electrical Conductivity 1:5 soil:water	UNITS - - pH Units μS/cm	165477-11 BH112 0.5 11/04/2017 Soil 22/04/2017 22/04/2017 5.6 64	165477-12 BH113 1.0-1.05 13/04/2017 Soil 22/04/2017 22/04/2017 6.1 12	165477-13 BH114 1.0 11/04/2017 Soil 22/04/2017 22/04/2017 6.0 13	165477-14 BH115 0.1 11/04/2017 Soil 22/04/2017 22/04/2017 6.1 32	165477-15 BH116 1.0 11/04/2017 Soil 22/04/2017 22/04/2017 6.4 14
Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed pH 1:5 soil:water Electrical Conductivity 1:5 soil:water	UNITS - pH Units µS/cm	165477-11 BH112 0.5 11/04/2017 Soil 22/04/2017 22/04/2017 5.6 64	165477-12 BH113 1.0-1.05 13/04/2017 Soil 22/04/2017 22/04/2017 6.1 12	165477-13 BH114 1.0 11/04/2017 Soil 22/04/2017 22/04/2017 6.0 13	165477-14 BH115 0.1 11/04/2017 Soil 22/04/2017 22/04/2017 6.1 32	165477-15 BH116 1.0 11/04/2017 Soil 22/04/2017 22/04/2017 6.4 14
Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed pH 1:5 soil:water Electrical Conductivity 1:5 soil:water Misc Inorg - Soil Our Reference:	UNITS - pH Units μS/cm UNITS	165477-11 BH112 0.5 11/04/2017 Soil 22/04/2017 22/04/2017 5.6 64 165477-16	165477-12 BH113 1.0-1.05 13/04/2017 Soil 22/04/2017 6.1 12 165477-17	165477-13 BH114 1.0 11/04/2017 Soil 22/04/2017 6.0 13 165477-18	165477-14 BH115 0.1 11/04/2017 Soil 22/04/2017 6.1 32 165477-19	165477-15 BH116 1.0 11/04/2017 Soil 22/04/2017 6.4 14 165477-20
Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed pH 1:5 soil:water Electrical Conductivity 1:5 soil:water Misc Inorg - Soil Our Reference: Your Reference	UNITS - - - - - - - - - - - -	165477-11 BH112 0.5 11/04/2017 Soil 22/04/2017 22/04/2017 5.6 64 165477-16 BH117	165477-12 BH113 1.0-1.05 13/04/2017 Soil 22/04/2017 6.1 12 165477-17 BH118	165477-13 BH114 1.0 11/04/2017 Soil 22/04/2017 22/04/2017 6.0 13 165477-18 BH119	165477-14 BH115 0.1 11/04/2017 Soil 22/04/2017 6.1 32 165477-19 BH120	165477-15 BH116 1.0 11/04/2017 Soil 22/04/2017 22/04/2017 6.4 14 165477-20 BH121
Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed pH 1:5 soil:water Electrical Conductivity 1:5 soil:water Misc Inorg - Soil Our Reference: Your Reference	UNITS - pH Units μS/cm UNITS 	165477-11 BH112 0.5 11/04/2017 Soil 22/04/2017 22/04/2017 5.6 64 165477-16 BH117	165477-12 BH113 1.0-1.05 13/04/2017 Soil 22/04/2017 6.1 12 165477-17 BH118	165477-13 BH114 1.0 11/04/2017 Soil 22/04/2017 22/04/2017 6.0 13 165477-18 BH119	165477-14 BH115 0.1 11/04/2017 Soil 22/04/2017 6.1 32 165477-19 BH120	165477-15 BH116 1.0 11/04/2017 Soil 22/04/2017 22/04/2017 6.4 14 165477-20 BH121
Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed pH 1:5 soil:water Electrical Conductivity 1:5 soil:water Misc Inorg - Soil Our Reference: Your Reference Depth	UNITS - pH Units μS/cm UNITS 	165477-11 BH112 0.5 11/04/2017 Soil 22/04/2017 5.6 64 165477-16 BH117 1.95-2.0	165477-12 BH113 1.0-1.05 13/04/2017 Soil 22/04/2017 6.1 12 165477-17 BH118 0.1-0.15	165477-13 BH114 1.0 11/04/2017 Soil 22/04/2017 22/04/2017 6.0 13 165477-18 BH119 0.5	165477-14 BH115 0.1 11/04/2017 Soil 22/04/2017 22/04/2017 6.1 32 165477-19 BH120 0.5	165477-15 BH116 1.0 11/04/2017 Soil 22/04/2017 6.4 14 165477-20 BH121 1.0
Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed pH 1:5 soil:water Electrical Conductivity 1:5 soil:water Misc Inorg - Soil Our Reference: Your Reference Depth Date Sampled	UNITS - pH Units μS/cm -	165477-11 BH112 0.5 11/04/2017 Soil 22/04/2017 22/04/2017 5.6 64 165477-16 BH117 1.95-2.0 13/04/2017	165477-12 BH113 1.0-1.05 13/04/2017 Soil 22/04/2017 6.1 12 165477-17 BH118 0.1-0.15 13/04/2017	165477-13 BH114 1.0 11/04/2017 Soil 22/04/2017 22/04/2017 6.0 13 165477-18 BH119 0.5 10/04/2017	165477-14 BH115 0.1 11/04/2017 Soil 22/04/2017 22/04/2017 6.1 32 165477-19 BH120 0.5 11/04/2017	165477-15 BH116 1.0 11/04/2017 Soil 22/04/2017 22/04/2017 6.4 14 165477-20 BH121 1.0 12/04/2017 2-"
Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed pH 1:5 soil:water Electrical Conductivity 1:5 soil:water Misc Inorg - Soil Our Reference: Your Reference Depth Date Sampled Type of sample	UNITS - - - μS/cm -	165477-11 BH112 0.5 11/04/2017 Soil 22/04/2017 22/04/2017 5.6 64 165477-16 BH117 1.95-2.0 13/04/2017 Soil	165477-12 BH113 1.0-1.05 13/04/2017 Soil 22/04/2017 6.1 12 165477-17 BH118 0.1-0.15 13/04/2017 Soil	165477-13 BH114 1.0 11/04/2017 Soil 22/04/2017 22/04/2017 6.0 13 165477-18 BH119 0.5 10/04/2017 Soil	165477-14 BH115 0.1 11/04/2017 Soil 22/04/2017 6.1 32 165477-19 BH120 0.5 11/04/2017 Soil	165477-15 BH116 1.0 11/04/2017 Soil 22/04/2017 6.4 14 165477-20 BH121 1.0 12/04/2017 Soil
Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed pH 1:5 soil:water Electrical Conductivity 1:5 soil:water Misc Inorg - Soil Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared	UNITS - pH Units μS/cm - 	165477-11 BH112 0.5 11/04/2017 Soil 22/04/2017 22/04/2017 5.6 64 165477-16 BH117 1.95-2.0 13/04/2017 Soil 22/04/2017	165477-12 BH113 1.0-1.05 13/04/2017 Soil 22/04/2017 6.1 12 165477-17 BH118 0.1-0.15 13/04/2017 Soil 22/04/2017	165477-13 BH114 1.0 11/04/2017 Soil 22/04/2017 22/04/2017 6.0 13 165477-18 BH119 0.5 10/04/2017 Soil 22/04/2017	165477-14 BH115 0.1 11/04/2017 Soil 22/04/2017 6.1 32 165477-19 BH120 0.5 11/04/2017 Soil 22/04/2017	165477-15 BH116 1.0 11/04/2017 Soil 22/04/2017 6.4 14 165477-20 BH121 1.0 12/04/2017 Soil 22/04/2017
Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed pH 1:5 soil:water Electrical Conductivity 1:5 soil:water Misc Inorg - Soil Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed	UNITS - - - - - -	165477-11 BH112 0.5 11/04/2017 Soil 22/04/2017 22/04/2017 5.6 64 165477-16 BH117 1.95-2.0 13/04/2017 Soil 22/04/2017	165477-12 BH113 1.0-1.05 13/04/2017 Soil 22/04/2017 6.1 12 165477-17 BH118 0.1-0.15 13/04/2017 Soil 22/04/2017	165477-13 BH114 1.0 11/04/2017 Soil 22/04/2017 22/04/2017 6.0 13 165477-18 BH119 0.5 10/04/2017 Soil 22/04/2017 22/04/2017	165477-14 BH115 0.1 11/04/2017 Soil 22/04/2017 22/04/2017 6.1 32 165477-19 BH120 0.5 11/04/2017 Soil 22/04/2017 22/04/2017	165477-15 BH116 1.0 11/04/2017 Soil 22/04/2017 6.4 14 165477-20 BH121 1.0 12/04/2017 Soil 22/04/2017
Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed pH 1:5 soil:water Electrical Conductivity 1:5 soil:water Misc Inorg - Soil Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed pH 1:5 soil:water	UNITS - - - -	165477-11 BH112 0.5 11/04/2017 Soil 22/04/2017 22/04/2017 5.6 64 165477-16 BH117 1.95-2.0 13/04/2017 Soil 22/04/2017 22/04/2017 6.1	165477-12 BH113 1.0-1.05 13/04/2017 Soil 22/04/2017 6.1 12 165477-17 BH118 0.1-0.15 13/04/2017 Soil 22/04/2017 22/04/2017	165477-13 BH114 1.0 11/04/2017 Soil 22/04/2017 22/04/2017 6.0 13 165477-18 BH119 0.5 10/04/2017 Soil 22/04/2017 22/04/2017	165477-14 BH115 0.1 11/04/2017 Soil 22/04/2017 22/04/2017 6.1 32 165477-19 BH120 0.5 11/04/2017 Soil 22/04/2017 22/04/2017 8.0	165477-15 BH116 1.0 11/04/2017 Soil 22/04/2017 6.4 14 165477-20 BH121 1.0 12/04/2017 Soil 22/04/2017 22/04/2017 22/04/2017
Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed pH 1:5 soil:water Electrical Conductivity 1:5 soil:water Misc Inorg - Soil Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed pH 1:5 soil:water	UNITS - - - - 	165477-11 BH112 0.5 11/04/2017 Soil 22/04/2017 22/04/2017 5.6 64 165477-16 BH117 1.95-2.0 13/04/2017 Soil 22/04/2017 6.1	165477-12 BH113 1.0-1.05 13/04/2017 Soil 22/04/2017 6.1 12 165477-17 BH118 0.1-0.15 13/04/2017 Soil 22/04/2017 22/04/2017 5.8	165477-13 BH114 1.0 11/04/2017 Soil 22/04/2017 22/04/2017 6.0 13 165477-18 BH119 0.5 10/04/2017 Soil 22/04/2017 22/04/2017 5.8	165477-14 BH115 0.1 11/04/2017 Soil 22/04/2017 6.1 32 165477-19 BH120 0.5 11/04/2017 Soil 22/04/2017 22/04/2017 8.0	165477-15 BH116 1.0 11/04/2017 Soil 22/04/2017 6.4 14 165477-20 BH121 1.0 12/04/2017 Soil 22/04/2017 22/04/2017 6.6
Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed pH 1:5 soil:water Electrical Conductivity 1:5 soil:water Misc Inorg - Soil Our Reference: Your Reference Depth Date Sampled Type of sample Date prepared Date analysed pH 1:5 soil:water Electrical Conductivity 1:5	UNITS - - - - - - - - - -	165477-11 BH112 0.5 11/04/2017 Soil 22/04/2017 22/04/2017 5.6 64 165477-16 BH117 1.95-2.0 13/04/2017 Soil 22/04/2017 22/04/2017 6.1 14	165477-12 BH113 1.0-1.05 13/04/2017 Soil 22/04/2017 6.1 12 165477-17 BH118 0.1-0.15 13/04/2017 Soil 22/04/2017 22/04/2017 5.8 27	165477-13 BH114 1.0 11/04/2017 Soil 22/04/2017 6.0 13 165477-18 BH119 0.5 10/04/2017 Soil 22/04/2017 22/04/2017 5.8 12	165477-14 BH115 0.1 11/04/2017 Soil 22/04/2017 6.1 32 165477-19 BH120 0.5 11/04/2017 Soil 22/04/2017 22/04/2017 8.0 130	165477-15 BH116 1.0 11/04/2017 Soil 22/04/2017 6.4 14 165477-20 BH121 1.0 12/04/2017 Soil 22/04/2017 22/04/2017 6.6 12

	1					
Misc Inorg - Soil						
Our Reference:	UNITS	165477-21	165477-22	165477-23	165477-24	165477-25
Your Reference		BH122	BH123	BH124	BH125	BH126
	-					
Depth		1.0	0.5	0.1	0.5	2.0
Date Sampled		11/04/2017	11/04/2017	10/04/2017	10/04/2017	12/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/04/2017	22/04/2017	22/04/2017	22/04/2017	22/04/2017
Date analysed	-	22/04/2017	22/04/2017	22/04/2017	22/04/2017	22/04/2017
pH 1:5 soil:water	pH Units	6.6	6.4	6.2	6.1	6.4
Electrical Conductivity 1:5	µS/cm	18	15	28	17	8
soil:water						
						-
Misc Inorg - Soil						
Our Reference:	UNITS	165477-26	165477-27	165477-28	165477-29	165477-30
Your Reference		BH127	BH128	BH129	BH129	BH130
	-					
Depth		0.5	1.0	0.5	2.0	0.1
Date Sampled		11/04/2017	12/04/2017	10/04/2017	10/04/2017	10/04/2017
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	22/04/2017	22/04/2017	22/04/2017	22/04/2017	22/04/2017
Date analysed	-	22/04/2017	22/04/2017	22/04/2017	22/04/2017	22/04/2017
pH 1:5 soil:water	pH Units	5.9	6.2	6.0	6.1	5.7
Electrical Conductivity 1:5 soil:water	µS/cm	13	11	16	15	25

Method ID	MethodologySummary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	For soil results:- 1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" are="" at="" is="" pql.="" the="" the<br="" this="">most conservative approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present.</pql>
	2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<="" present="" susceptible="" td="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""></pql>
	3. 'TEQ half PQL' values are assuming all contributing PAHs reported as <pql are="" half="" pql.<br="" stipulated="" the="">Hence a mid-point between the most and least conservative approaches above.</pql>
	Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
	Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.

Method ID	MethodologySummary
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.

Client Reference:

84944.01, Bellevue Hill

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
Soil						Base II Duplicate II %RPD		
Date extracted	-			20/04/2 017	165477-1	20/04/2017 20/04/2017	LCS-6	20/04/2017
Date analysed	-			21/04/2 017	165477-1	20/04/2017 20/04/2017	LCS-6	21/04/2017
TRHC6 - C9	mg/kg	25	Org-016	<25	165477-1	<25 <25	LCS-6	111%
TRHC6 - C10	mg/kg	25	Org-016	<25	165477-1	<25 <25	LCS-6	111%
Benzene	mg/kg	0.2	Org-016	<0.2	165477-1	<0.2 <0.2	LCS-6	116%
Toluene	mg/kg	0.5	Org-016	<0.5	165477-1	<0.5 <0.5	LCS-6	103%
Ethylbenzene	mg/kg	1	Org-016	<1	165477-1	<1 <1	LCS-6	110%
m+p-xylene	mg/kg	2	Org-016	<2	165477-1	<2 <2	LCS-6	113%
o-Xylene	mg/kg	1	Org-016	<1	165477-1	<1 <1	LCS-6	110%
naphthalene	mg/kg	1	Org-014	<1	165477-1	<1 <1	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	100	165477-1	98 97 RPD: 1	LCS-6	104%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recoverv
svTRH (C10-C40) in Soil						Base II Duplicate II % RPD		
Date extracted	-			20/04/2 017	165477-1	20/04/2017 20/04/2017	LCS-6	20/04/2017
Date analysed	-			21/04/2 017	165477-1	20/04/2017 20/04/2017	LCS-6	21/04/2017
TRHC 10 - C 14	mg/kg	50	Org-003	<50	165477-1	<50 <50	LCS-6	110%
TRHC 15 - C28	mg/kg	100	Org-003	<100	165477-1	<100 <100	LCS-6	104%
TRHC29 - C36	mg/kg	100	Org-003	<100	165477-1	<100 <100	LCS-6	94%
TRH>C 10-C 16	mg/kg	50	Org-003	<50	165477-1	<50 <50	LCS-6	110%
TRH>C16-C34	mg/kg	100	Org-003	<100	165477-1	<100 <100	LCS-6	104%
TRH>C34-C40	mg/kg	100	Org-003	<100	165477-1	<100 <100	LCS-6	94%
Surrogate o-Terphenyl	%		Org-003	87	165477-1	84 87 RPD:4	LCS-6	104%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
PAHs in Soil						Base II Duplicate II % RPD		Recovery
Date extracted	-			20/04/2 017	165477-1	20/04/2017 20/04/2017	LCS-6	20/04/2017
Date analysed	-			21/04/2 017	165477-1	21/04/2017 21/04/2017	LCS-6	21/04/2017
Naphthalene	mg/kg	0.1	Org-012	<0.1	165477-1	<0.1 <0.1	LCS-6	89%
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012	<0.1	165477-1	<0.1 <0.1	LCS-6	84%
Phenanthrene	mg/kg	0.1	Org-012	<0.1	165477-1	0.1 <0.1	LCS-6	89%
Anthracene	mg/kg	0.1	Org-012	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	165477-1	0.6 0.4 RPD:40	LCS-6	85%
Pyrene	mg/kg	0.1	Org-012	<0.1	165477-1	0.5 0.3 RPD:50	LCS-6	82%
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	165477-1	0.2 0.1 RPD:67	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012	<0.1	165477-1	0.3 0.2 RPD:40	LCS-6	79%
Benzo(b,j+k) fluoranthene	mg/kg	0.2	Org-012	<0.2	165477-1	0.5 0.3 RPD:50	[NR]	[NR]

Client Reference: 84944.01, Bellevue Hill								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	165477-1	0.3 0.2 RPD:40	LCS-6	83%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	165477-1	0.3 0.2 RPD:40	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	165477-1	0.2 0.1 RPD:67	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012	96	165477-1	97 96 RPD:1	LCS-6	122%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil						Base II Duplicate II %RPD		
Date extracted	-			20/04/2 017	165477-1	20/04/2017 20/04/2017	LCS-6	20/04/2017
Date analysed	-			20/04/2 017	165477-1	20/04/2017 20/04/2017	LCS-6	20/04/2017
HCB	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	LCS-6	103%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	LCS-6	96%
Heptachlor	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	LCS-6	100%
delta-BHC	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	LCS-6	92%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	LCS-6	103%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	LCS-6	114%
Dieldrin	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	LCS-6	110%
Endrin	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	LCS-6	104%
pp-DDD	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	LCS-6	109%
Endosulfan II	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	LCS-6	81%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%		Org-005	101	165477-1	99 98 RPD: 1	LCS-6	114%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides						Base II Duplicate II % RPD		
Date extracted	-			20/04/2 017	165477-1	20/04/2017 20/04/2017	LCS-6	20/04/2017
Date analysed	-			20/04/2 017	165477-1	20/04/2017 20/04/2017	LCS-6	20/04/2017
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	165477-1	<0.1 <0.1	LCS-6	92%
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
Diazinon	mg/kg	0.1	Org-008	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
Dichlorvos	mg/kg	0.1	Org-008	<0.1	165477-1	<0.1 <0.1	LCS-6	84%
Dimethoate	mg/kg	0.1	Org-008	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	0.1	Org-008	<0.1	165477-1	<0.1 <0.1	LCS-6	105%
Fenitrothion	mg/kg	0.1	Org-008	<0.1	165477-1	<0.1 <0.1	LCS-6	111%
Malathion	mg/kg	0.1	Org-008	<0.1	165477-1	<0.1 <0.1	LCS-6	79%
Parathion	mg/kg	0.1	Org-008	<0.1	165477-1	<0.1 <0.1	LCS-6	90%
Ronnel	mg/kg	0.1	Org-008	<0.1	165477-1	<0.1 <0.1	LCS-6	83%
Surrogate TCMX	%		Org-008	101	165477-1	99 98 RPD: 1	LCS-6	98%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
PCBs in Soil						Base II Duplicate II %RPD		Recovery
Date extracted	-			20/04/2 017	165477-1	20/04/2017 20/04/2017	LCS-6	20/04/2017
Date analysed	-			20/04/2 017	165477-1	20/04/2017 20/04/2017	LCS-6	20/04/2017
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	165477-1	<0.1 <0.1	LCS-6	109%
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	165477-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		Org-006	101	165477-1	99 98 RPD: 1	LCS-6	98%

Client Reference:

84944.01, Bellevue Hill

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Dupli	icate results	Spike Sm#	Spike %	
					Sm#	_			Recovery	
Acid Extractable metals						Base	Il Duplicate II %RPD			
Dete propored				20/04/2	165477 1	00/04/00471100/04/0047			20/04/2017	
Date prepared	-			017	100477-1	20/0	20/04/2017 20/04/2017		20/04/2017	
Date analysed	-			20/04/2 017	165477-1	20/0	04/2017 20/04/2017	LCS-6	20/04/2017	
Arsenic	mg/kg	4	Metals-020	<4	165477-1		6 5 RPD:18	LCS-6	108%	
Cadmium	mg/kg	0.4	Metals-020	<0.4	165477-1		<0.4 <0.4	LCS-6	96%	
Chromium	mg/kg	1	Metals-020	<1	165477-1		2 2 RPD:0	LCS-6	105%	
Copper	mg/kg	1	Metals-020	<1	165477-1		18 15 RPD: 18	LCS-6	104%	
Lead	mg/kg	1	Metals-020	<1	165477-1	2	22 11 RPD: 67	LCS-6	99%	
Mercury	mg/kg	0.1	Metals-021	<0.1	165477-1		<0.1 <0.1	LCS-6	108%	
Nickel	mg/kg	1	Metals-020	<1	165477-1		1 1 RPD:0	LCS-6	96%	
Zinc	mg/kg	1	Metals-020	<1	165477-1		12 7 RPD: 53	LCS-6	98%	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Dupli	icate results	Spike Sm#	Spike %	
					Sm#	_			Recovery	
Misc Soil - Inorg						Base	II Duplicate II %RPD			
Date prepared	-			20/04/2 017	165477-1	20/0	04/2017 20/04/2017	LCS-1	20/04/2017	
Date analysed	-			20/04/2 017	165477-1	20/0	04/2017 20/04/2017	LCS-1	20/04/2017	
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	165477-1		<5 <5	LCS-1	100%	
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Dupli	icate results	Spike Sm#	Spike %	
					Sm#	_			Recovery	
Misc Inorg - Soil						Base	II Duplicate II %RPD			
Date prepared	-			22/04/2 017	165477-1	22/0	04/2017 22/04/2017	LCS-6	22/04/2017	
Date analysed	-			22/04/2 017	165477-1	22/0	04/2017 22/04/2017	LCS-6	22/04/2017	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	165477-1	6	6.4 6.1 RPD: 5	LCS-6	102%	
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	165477-1		22 21 RPD:5	LCS-6	107%	
QUALITYCONTROL	UNITS	S 1	Dup.Sm#		Duplicate		Spike Sm#	Spike % Reco	very	
vTRH(C6-C10)/BTEXNin Soil				Base + [Duplicate + %RP	PD				
Date extracted	-	1	65477-11	20/04/2	017 20/04/201	7	LCS-5	20/04/201	7	
Date analysed	-	1	65477-11	20/04/2	017 20/04/201	7	LCS-5	20/04/201	7	
TRHC6 - C9	ma/ka	a 1	65477-11		<25 <25		LCS-5	102%		
	ma/ka	, 1	65477-11		<25 <25		105-5	102%		
	mg/kg		65477 11		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			10270		
Delizene	mg/kg		00477-11		<0.2 <0.2		LC3-5	100 %		
	ing/Kg	, 1	00477-11		C.U> C.U>		LCO-0	94%		
Ethylbenzene	mg/kg	3 1	65477-11		<1 <1		LCS-5	101%		
m+p-xylene	mg/kg	g 1	65477-11		<2 <2		LCS-5	103%		
o-Xylene	mg/kg	g 1	65477-11		<1 <1		LCS-5	100%		
naphthalene	mg/kg	g 1	65477-11		<1 <1		[NR]	[NR]		
<i>Surrogate</i> aaa- Trifluorotoluene	%	1	65477-11	98	97 RPD:1		LCS-5	97%		

		Client Reference	e: 84944.01, Bellevue	e Hill	
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	165477-11	20/04/2017 20/04/2017	LCS-5	20/04/2017
Date analysed	-	165477-11	20/04/2017 20/04/2017	LCS-5	20/04/2017
TRHC 10 - C 14	mg/kg	165477-11	<50 <50	LCS-5	109%
TRHC 15 - C28	mg/kg	165477-11	<100 <100	LCS-5	104%
TRHC29 - C36	mg/kg	165477-11	<100 <100	LCS-5	106%
TRH>C10-C16	mg/kg	165477-11	<50 <50	LCS-5	109%
TRH>C16-C34	mg/kg	165477-11	<100 <100	LCS-5	104%
TRH>C34-C40	mg/kg	165477-11	<100 <100	LCS-5	106%
Surrogate o-Terphenyl	%	165477-11	82 83 RPD:1	LCS-5	105%
QUALITY CONTROL PAHs in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	165477-11	20/04/2017 20/04/2017	LCS-5	20/04/2017
Date analysed	-	165477-11	21/04/2017 21/04/2017	LCS-5	21/04/2017
Naphthalene	mg/kg	165477-11	<0.1 <0.1	LCS-5	88%
Acenaphthylene	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	165477-11	<0.1 <0.1	LCS-5	83%
Phenanthrene	mg/kg	165477-11	<0.1 <0.1	LCS-5	89%
Anthracene	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	165477-11	<0.1 <0.1	LCS-5	85%
Pyrene	mg/kg	165477-11	<0.1 <0.1	LCS-5	81%
Benzo(a)anthracene	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	165477-11	<0.1 <0.1	LCS-5	79%
Benzo(b,j+k)fluoranthene	mg/kg	165477-11	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	165477-11	<0.05 <0.05	LCS-5	80%
Indeno(1,2,3-c,d)pyrene	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	165477-11	98 97 RPD: 1	LCS-5	118%

Client Reference:	84
-------------------	----

84944.01, Bellevue Hill

QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	165477-11	20/04/2017 20/04/2017	LCS-5	20/04/2017
Date analysed	-	165477-11	20/04/2017 20/04/2017	LCS-5	20/04/2017
НСВ	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	165477-11	<0.1 <0.1	LCS-5	103%
gamma-BHC	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	165477-11	<0.1 <0.1	LCS-5	95%
Heptachlor	mg/kg	165477-11	<0.1 <0.1	LCS-5	99%
delta-BHC	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	165477-11	<0.1 <0.1	LCS-5	90%
Heptachlor Epoxide	mg/kg	165477-11	<0.1 <0.1	LCS-5	102%
gamma-Chlordane	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	165477-11	<0.1 <0.1	LCS-5	111%
Dieldrin	mg/kg	165477-11	<0.1 <0.1	LCS-5	108%
Endrin	mg/kg	165477-11	<0.1 <0.1	LCS-5	103%
pp-DDD	mg/kg	165477-11	<0.1 <0.1	LCS-5	107%
Endosulfan II	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	165477-11	<0.1 <0.1	LCS-5	82%
Methoxychlor	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%	165477-11	98 98 RPD:0	LCS-5	112%

		Client Referen	ce: 84944.01, Bellevue	e Hill	
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Organophosphorus			Base + Duplicate + %RPD		
Date extracted	-	165477-11	20/04/2017 20/04/2017	LCS-5	20/04/2017
Date analysed	-	165477-11	20/04/2017 20/04/2017	LCS-5	20/04/2017
Azinphos-methyl (Guthion)	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Bromophos-ethyl	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	165477-11	<0.1 <0.1	LCS-5	93%
Chlorpyriphos-methyl	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Diazinon	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Dichlorvos	mg/kg	165477-11	<0.1 <0.1	LCS-5	101%
Dimethoate	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	165477-11	<0.1 <0.1	LCS-5	105%
Fenitrothion	mg/kg	165477-11	<0.1 <0.1	LCS-5	112%
Malathion	mg/kg	165477-11	<0.1 <0.1	LCS-5	79%
Parathion	mg/kg	165477-11	<0.1 <0.1	LCS-5	94%
Ronnel	mg/kg	165477-11	<0.1 <0.1	LCS-5	85%
Surrogate TCMX	%	165477-11	98 98 RPD:0	LCS-5	100%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PCBs in Soil			Base + Duplicate + %RPD		
Date extracted	-	165477-11	20/04/2017 20/04/2017	LCS-5	20/04/2017
Date analysed	-	165477-11	20/04/2017 20/04/2017	LCS-5	20/04/2017
Aroclor 1016	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Aroclor 1221	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Aroclor 1232	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Aroclor 1242	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Aroclor 1248	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Aroclor 1254	mg/kg	165477-11	<0.1 <0.1	LCS-5	111%
Aroclor 1260	mg/kg	165477-11	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%	165477-11	98 98 RPD: 0	LCS-5	100%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in			Base + Duplicate + %RPD		
S011					
Date prepared	-	165477-11	20/04/2017 20/04/2017	LCS-5	20/04/2017
Date analysed	-	165477-11	20/04/2017 20/04/2017	LCS-5	20/04/2017
Arsenic	mg/kg	165477-11	<4 <4	LCS-5	107%
Cadmium	mg/kg	165477-11	<0.4 <0.4	LCS-5	99%
Chromium	mg/kg	165477-11	4 2 RPD:67	LCS-5	104%
Copper	mg/kg	165477-11	4 1 RPD:120	LCS-5	103%
Lead	mg/kg	165477-11	10 4 RPD:86	LCS-5	100%
Mercury	mg/kg	165477-11	<0.1 <0.1	LCS-5	111%
Nickel	mg/kg	165477-11	2 <1	LCS-5	95%
Zinc	mg/kg	165477-11	11 5 RPD:75	LCS-5	96%

Client Reference: 84944.01, Bellevue Hill					
QUALITY CONTROL Misc Soil - Inorg	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
 Date prepared	_	165477-11	20/04/2017 20/04/2017	108-2	20/04/2017
Date analysed		165477 11	20/04/2017 20/04/2017	105-2	20/04/2017
Total Denolics (as Dhenol)	ma/ka	165477-11	20/04/2017 20/04/2017		101%
			Dunlicate	Spike Sm#	Spike % Pecovery
Misc Inorg - Soil	UNITO	Dup. Shi#	Base + Duplicate + %RPD	Opike Oni#	Spike // Kecovery
 Date prepared	_	165477-11	22/04/2017 22/04/2017	LCS-7	22/04/2017
Date analysed	-	165477-11	22/04/2017 22/04/2017	LCS-7	22/04/2017
pH 1:5 soil:water	pH Units	165477-11	5.6 5.9 RPD:5	LCS-7	102%
Electrical Conductivity 1:5 soil:water	μS/cm	165477-11	64 68 RPD:6	LCS-7	98%
QUALITYCONTROL vTRH(C6-C10)/BTEXN in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017
Date analysed	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017
TRHC6 - C9	mg/kg	165477-21	<25 <25	165477-2	106%
TRHC6 - C10	mg/kg	165477-21	<25 <25	165477-2	106%
Benzene	mg/kg	165477-21	<0.2 <0.2	165477-2	110%
Toluene	mg/kg	165477-21	<0.5 <0.5	165477-2	99%
Ethylbenzene	mg/kg	165477-21	<1 <1	165477-2	105%
m+p-xylene	mg/kg	165477-21	<2 <2	165477-2	108%
o-Xylene	mg/kg	165477-21	<1 <1	165477-2	105%
naphthalene	mg/kg	165477-21	<1 <1	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%	165477-21	101 97 RPD: 4	165477-2	100%
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017
Date analysed	-	165477-21	21/04/2017 21/04/2017	165477-2	20/04/2017
TRHC 10 - C 14	mg/kg	165477-21	<50 <50	165477-2	100%
TRHC 15 - C28	mg/kg	165477-21	<100 <100	165477-2	92%
TRHC29 - C36	mg/kg	165477-21	<100 <100	165477-2	73%
TRH>C10-C16	mg/kg	165477-21	<50 <50	165477-2	100%
TRH>C16-C34	mg/kg	165477-21	<100 <100	165477-2	92%
TRH>C34-C40	mg/kg	165477-21	<100 <100	165477-2	73%
Surrogate o-Terphenyl	%	165477-21	86 82 RPD:5	165477-2	84%

Surrogate o-Terphenyl

|--|

84944.01, Bellevue Hill

	_	Chefit Kelerenc	e. 04344.01, Dellevu	÷ 1 1111	
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017
Date analysed	-	165477-21	21/04/2017 21/04/2017	165477-2	21/04/2017
Naphthalene	mg/kg	165477-21	<0.1 <0.1	165477-2	84%
Acenaphthylene	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	165477-21	<0.1 <0.1	165477-2	78%
Phenanthrene	mg/kg	165477-21	<0.1 <0.1	165477-2	76%
Anthracene	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	165477-21	<0.1 <0.1	165477-2	73%
Pyrene	mg/kg	165477-21	<0.1 <0.1	165477-2	75%
Benzo(a)anthracene	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	165477-21	<0.1 <0.1	165477-2	70%
Benzo(b,j+k)fluoranthene	mg/kg	165477-21	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	165477-21	<0.05 <0.05	165477-2	76%
Indeno(1,2,3-c,d)pyrene	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	165477-21	93 97 RPD:4	165477-2	115%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil			Base + Duplicate + %RPD		
Date extracted	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017
Date analysed	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017
HCB	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	165477-21	<0.1 <0.1	165477-2	120%
gamma-BHC	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	165477-21	<0.1 <0.1	165477-2	96%
Heptachlor	mg/kg	165477-21	<0.1 <0.1	165477-2	100%
delta-BHC	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	165477-21	<0.1 <0.1	165477-2	92%
Heptachlor Epoxide	mg/kg	165477-21	<0.1 <0.1	165477-2	103%
gamma-Chlordane	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	165477-21	<0.1 <0.1	165477-2	113%
Dieldrin	mg/kg	165477-21	<0.1 <0.1	165477-2	109%
Endrin	mg/kg	165477-21	<0.1 <0.1	165477-2	103%
pp-DDD	mg/kg	165477-21	<0.1 <0.1	165477-2	108%
Endosulfan II	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	165477-21	<0.1 <0.1	165477-2	79%

		Client Referenc	e: 84944.01, Bellevue	e Hill	
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Methoxychlor	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%	165477-21	99 100 RPD: 1	165477-2	112%
QUALITY CONTROL Organophosphorus Pesticides	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017
Date analysed	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017
Azinphos-methyl (Guthion)	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
Bromophos-ethyl	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	165477-21	<0.1 <0.1	165477-2	89%
Chlorpyriphos-methyl	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
Diazinon	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
Dichlorvos	mg/kg	165477-21	<0.1 <0.1	165477-2	86%
Dimethoate	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	165477-21	<0.1 <0.1	165477-2	111%
Fenitrothion	mg/kg	165477-21	<0.1 <0.1	165477-2	101%
Malathion	mg/kg	165477-21	<0.1 <0.1	165477-2	75%
Parathion	mg/kg	165477-21	<0.1 <0.1	165477-2	86%
Ronnel	mg/kg	165477-21	<0.1 <0.1	165477-2	80%
Surrogate TCMX	%	165477-21	99 100 RPD: 1	165477-2	97%
QUALITY CONTROL PCBs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017
Date analysed	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017
Aroclor 1016	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
Aroclor 1221	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
Aroclor 1232	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
Aroclor 1242	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
Aroclor 1248	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
Aroclor 1254	mg/kg	165477-21	<0.1 <0.1	165477-2	107%
Aroclor 1260	mg/kg	165477-21	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%	165477-21	99 100 RPD: 1	165477-2	97%

		Client Referenc	e: 84944.01, Bellevu	e Hill	
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil			Base + Duplicate + %RPD		
Date prepared	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017
Date analysed	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017
Arsenic	mg/kg	165477-21	<4 <4	165477-2	99%
Cadmium	mg/kg	165477-21	<0.4 <0.4	165477-2	104%
Chromium	mg/kg	165477-21	8 14 RPD:55	165477-2	107%
Copper	mg/kg	165477-21	4 5 RPD:22	165477-2	104%
Lead	mg/kg	165477-21	6 5 RPD:18	165477-2	101%
Mercury	mg/kg	165477-21	<0.1 <0.1	165477-2	108%
Nickel	mg/kg	165477-21	8 12 RPD:40	165477-2	103%
Zinc	mg/kg	165477-21	7 10 RPD:35	165477-2	102%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Misc Soil - Inorg			Base + Duplicate + %RPD		
Date prepared	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017
Date analysed	-	165477-21	20/04/2017 20/04/2017	165477-2	20/04/2017
Total Phenolics (as Phenol)	mg/kg	165477-21	<5 <5	165477-2	93%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate		
Misc Inorg - Soil			Base + Duplicate + %RPD	-	
Date prepared	-	165477-21	22/04/2017 22/04/2017		
Date analysed	-	165477-21	22/04/2017 22/04/2017		
pH 1:5 soil:water	pH Units	165477-21	6.6 6.6 RPD:0		
Electrical Conductivity 1:5 soil:water	µS/cm	165477-21	18 18 RPD: 0		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin			Base + Duplicate + %RPD		
Date extracted	-	[N1]	[N1]	165477-22	20/04/2017
Date analysed	-	[N1]	[N1]	165477-22	20/04/2017
TRHC6 - C9	mg/kg	[N1]	[N1]	165477-22	101%
TRHC6 - C10	mg/kg	[NT]	[NT]	165477-22	101%
Benzene	mg/kg	[NT]	[NT]	165477-22	106%
Toluene	mg/kg	[NT]	[NT]	165477-22	92%
Ethylbenzene	mg/kg	[NT]	[NT]	165477-22	100%
m+p-xylene	mg/kg	[NT]	[NT]	165477-22	103%
o-Xylene	mg/kg	[NT]	[NT]	165477-22	100%
naphthalene	mg/kg	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%	[NT]	[NT]	165477-22	96%

Client Reference: 84944.01, Bellevue Hill					
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	165477-22	20/04/2017
Date analysed	-	[NT]	[NT]	165477-22	21/04/2017
TRHC 10 - C 14	mg/kg	[NT]	[NT]	165477-22	105%
TRHC 15 - C28	mg/kg	[NT]	[NT]	165477-22	98%
TRHC29 - C36	mg/kg	[NT]	[NT]	165477-22	103%
TRH>C10-C16	mg/kg	[NT]	[NT]	165477-22	105%
TRH>C16-C34	mg/kg	[NT]	[NT]	165477-22	98%
TRH>C34-C40	mg/kg	[NT]	[NT]	165477-22	103%
Surrogate o-Terphenyl	%	[NT]	[NT]	165477-22	93%
QUALITY CONTROL PAHs in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	165477-22	20/04/2017
Date analysed	-	[NT]	[NT]	165477-22	21/04/2017
Naphthalene	mg/kg	[NT]	[NT]	165477-22	84%
Acenaphthylene	mg/kg	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	[NT]	[NT]	165477-22	78%
Phenanthrene	mg/kg	[NT]	[NT]	165477-22	77%
Anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	[NT]	[NT]	165477-22	73%
Pyrene	mg/kg	[NT]	[NT]	165477-22	74%
Benzo(a)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	[NT]	[NT]	165477-22	67%
Benzo(b,j+k)fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	[NT]	[NT]	165477-22	77%
Indeno(1,2,3-c,d)pyrene	mg/kg	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	[NT]	[NT]	165477-22	117%

		Client Referenc	e: 84944.01, Bellevue	e Hill	
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	165477-22	20/04/2017
Date analysed	-	[NT]	[NT]	165477-22	20/04/2017
HCB	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-BHC	mg/kg	[NT]	[NT]	165477-22	109%
gamma-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
beta-BHC	mg/kg	[NT]	[NT]	165477-22	98%
Heptachlor	mg/kg	[NT]	[NT]	165477-22	101%
delta-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
Aldrin	mg/kg	[NT]	[NT]	165477-22	94%
Heptachlor Epoxide	mg/kg	[NT]	[NT]	165477-22	106%
gamma-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan I	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDE	mg/kg	[NT]	[NT]	165477-22	116%
Dieldrin	mg/kg	[NT]	[NT]	165477-22	113%
Endrin	mg/kg	[NT]	[NT]	165477-22	104%
pp-DDD	mg/kg	[NT]	[NT]	165477-22	110%
Endosulfan II	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDT	mg/kg	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	[NT]	[NT]	165477-22	78%
Methoxychlor	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%	[NT]	[NT]	165477-22	116%

		Client Reference	e: 84944.01, Bellevue	e Hill	
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Organophosphorus Posticides			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	165477-22	20/04/2017
Date analysed	-	[NT]	[NT]	165477-22	20/04/2017
Azinphos-methyl (Guthion)	mg/kg	[NT]	[NT]	[NR]	[NR]
Bromophos-ethyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	mg/kg	[NT]	[NT]	165477-22	93%
Chlorpyriphos-methyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Diazinon	mg/kg	[NT]	[NT]	[NR]	[NR]
Dichlorvos	mg/kg	[NT]	[NT]	165477-22	84%
Dimethoate	mg/kg	[NT]	[NT]	[NR]	[NR]
Ethion	mg/kg	[NT]	[NT]	165477-22	113%
Fenitrothion	mg/kg	[NT]	[NT]	165477-22	75%
Malathion	mg/kg	[NT]	[NT]	165477-22	77%
Parathion	mg/kg	[NT]	[NT]	165477-22	86%
Ronnel	mg/kg	[NT]	[NT]	165477-22	83%
Surrogate TCMX	%	[NT]	[NT]	165477-22	98%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PCBs in Soil			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	165477-22	20/04/2017
Date analysed	-	[NT]	[NT]	165477-22	20/04/2017
Aroclor 1016	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1221	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1232	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1242	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1248	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1254	mg/kg	[NT]	[NT]	165477-22	110%
Aroclor 1260	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%	[NT]	[NT]	165477-22	98%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil			Base + Duplicate + %RPD		
Date prepared	-	[NT]	[NT]	165477-22	20/04/2017
Date analysed	-	[NT]	[NT]	165477-22	20/04/2017
Arsenic	mg/kg	[NT]	[NT]	165477-22	97%
Cadmium	mg/kg	[NT]	[NT]	165477-22	100%
Chromium	mg/kg	[NT]	[NT]	165477-22	100%
Copper	mg/kg	[NT]	[NT]	165477-22	104%
Lead	mg/kg	[NT]	[NT]	165477-22	100%
Mercury	mg/kg	[NT]	[NT]	165477-22	116%
Nickel	mg/kg	[NT]	[NT]	165477-22	98%
Zinc	mg/kg	[NT]	[NT]	165477-22	101%

		Client Referenc	e: 84944.01, Bellevu	e Hill	
QUALITY CONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Misc Soil - Inorg			Base + Duplicate + %RPD		
Date prepared	-	[NT]	[NT]	165477-22	20/04/2017
Date analysed	-	[NT]	[NT]	165477-22	20/04/2017
Total Phenolics (as Phenol)	mg/kg	[NT]	[NT]	165477-22	96%

Report Comments:

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 165477-1 for Pb and Zn. Therefore a triplicate result has been issued as laboratory sample number 165477-31.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 165477-11 for Pb and Zn. Therefore a triplicate result has been issued as laboratory sample number 165477-32.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 165477-21 for Cr. Therefore a triplicate result has been issued as laboratory sample number 165477-33.

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples 165477-11, 19, 23, 24 were sub-sampled from jars and Samples 165477-1 to 10, 12 to 18, 20 to 22, 25 to 30 were sub-sampled from bags provided by the client.

Asbestos ID was analysed by Approved Identifier:Lucy ZhuAsbestos ID was authorised by Approved Signatory:Paul Ching

INS: Insufficient sample for this test NR: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Peter Oitmaa

Sample Login Details				
Your Reference	84944.01, Bellevue Hill			
Envirolab Reference	165477			
Date Sample Received	19/04/2017			
Date Instructions Received	19/04/2017			
Date Results Expected to be Reported	27/04/2017			

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	30 soils
Turnaround Time Requested	Standard
Temperature on receipt (°C)	16.0
Cooling Method	Ice
Sampling Date Provided	YES

Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au

Sample and Testing Details on following page

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

Sample Id	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides	PCBs in Soil	Acid Extractable metals in soil	Total Phenolics (as Phenol)	Asbestos ID - soils	Electrical Conductivity 1:5 soil:water	pH 1:5 soil:water
BH101-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH101-4.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	<	\checkmark	\leq	\checkmark
BH102-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	<	\checkmark	\leq	\checkmark
BH102-2.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH103-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH103-1.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH104-1.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH105-1.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH111-0.45- 0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH111-2.9-3.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH112-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH113-1.0-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
1.05								,			
BH114-1.0	√ 	 ✓ 	√ √	√ √	√ √	√ √	√ √	✓	√ √	~	√
BH115-0.1	√ 	\checkmark	√ √	√ √	√ √	√ 	√ √	√ √	√ √	√ √	√
BH110-1.0 BH117-1.95-	\checkmark	\checkmark	 ✓ 	 ✓ 	 ✓ 	 ✓ 	 ✓ 	 ✓ 	 ✓ 	 ✓ 	\checkmark
BH118-0.1- 0 15	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH119-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH120-0.5	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		√		\checkmark
BH121-1.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH122-1.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH123-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH124-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH125-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH126-2.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH127-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH128-1.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH129-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH129-2.0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BH130-0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Project Project Email: Date R	Name: No: Mgr:	Be Be Pe St St	illevue 944.01 ter Oitr ter.Oitr andard	Hill maa t/a La	NuglasPari b Quote N	ampler: Mc thers.col	R Wonç b. Pho m.au) ne: 0412	574 518	To:	Envirolab 12 Ashley Attn: Tar Phone: 0; Email: tno	Services / Street, Chat ia Notaras 2 9910 6200 F itaras@enviro	swood NSW 2 ax: 02 9910 6201 olabservices.com	:068 1.au
				Sample						Analyte	s			
Sample ID	Sample Depth (m)	Lab D	Sampling Date	S - soil W – water	Container type	Sa Sa	pH, EC							Notes
BH101	0.5	-	12/4	S	Jar/bag	×	×							
BH101	4.0	1	12/4,	S	Jar/bag	х	×							
BH102	0.5	m	12/4	S	Jar/bag	×	×				(Envirolat C.		
BH102	2.0	4	12/4	S	Jar/bag	х	×				ENVIROLA	3 12 Ast Chatswood NSW	hey St Vion	
BH103	0.1	4	11/4	S	Jar/bag	х	×				Job No:	Ph: (02) 991	0 6200	
BH103	1.0	0	11/4	S	Jar/bag	×	. ×				Date Recei	ved: 19 L		
BH104	1.0	+	12/4	S	Jar/bag	х	. ×				Time Received h	ived: 15-20.		
BH105	1.0	8	10/4	S	Jar/bag	×	×				Temp: Sool	Amprest		
BH111	0.45-0.5	0	13/4	S	Jar/bag	×	. ×				Security: Int	act/Broken/None		
BH111	2.9-3.0	2	13/4	S	Jar/bag	×	×				/	-		
BH112	0.5	11	11/4	S	Jar/bág	×	×							
BH113	1.0-1.05	2	.13/4	S	Jar/bag	×	×							
Lab Repo	t No												Phone: (02) 980	990066
Send Res	ults to: P	eter.O	itmaa@	P Douglas	sPartners.	com.au	4	Address:	96 Hermitaç	le Road,	West Ryde	2114	Fax: (02)	9809 4095
Relinquish	d by:		Si	igned:			Date &	& Time:		Rece	sived By:	•	Date & Time	ioi
Relinquishe	d by:		Sic	ined:			Date &	Time:		Recei	ived By:	¢	Date & Time	OIL .

Page_1__ of __3_

Form COC Rev0/November 2006

Aure Aure 4.01. 4.01. 7.0itr 1.0itr 1.0itr 1.0itr 1.1/4 1.1/4 1.1/4<	vue Hill To: Envirolab Services	4.01	Sample Analytes Analytes	Date Date W - water W - water type ba Ba bH, EC Combo Ba Combo Ba Combo Ba Combo Ba Combo Ba Combo Ba Combo Ba Combo Ba Combo Ba Combo Ba Combo Ba Combo Ba Combo Ba Combo Ba Combo Ba Combo Ba Combo Ba Combo Ba Combo Ba Combo Co Combo Co Combo Co Co Combo Combo Co Co Co Co Co	11/4 S Jar/bag X X	11/4 S Jar/bag x x	11/4 S Jar/bag x x	13/4 S Jar/bag x x	13/4 S Jar/bag x x	10/4 S Jar/bag x x	11/4 S Jar/Magg X X	12/4 S Jar/bag x x	1/4 S Jar/bag x x	1/4 S Jar/bag x x	10/4 S Jar/Wass x x	10/4 S Jar/bág x x		iaa@DouglasPartners.com.au Address: 96 Hermitage Road, West Ryde 2114 Fax: (02) 9809 4095	Signed: Date & Time: Received By: ρS Date & Time: $ q /q$	
Cine F 2/4 011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/ue Hill	4.01 Oitmaa Oitmaa@Dougla lard t/a Lab Qu	Sample Type	Date S - soil W - water	1/4 S Jar/	1/4 S Jar	1/4 S Jar	3/4 S Jar/	3/4 S Jar/	0/4 S Jar/	1/4 S Jar/	2/4 S Jar/	1/4 S Jar/	1/4 S Jar/	0/4 S Jarl	0/4 S Jarl		aa@DouglasParti	Signed:	Signad.
	oject Name:	roject No: roject Mgr: mail: ate Required:		nple Sample L Depth II (m)	1114 1.0	1115 0.1	1116 1.0 1.	1117 1.95-2.0	1118 0.1-0.15 <i>[</i>	1119 0.5 1	1120 0.5 (121 1.0 2	1122 1.0	1123 0.5 2	1124 0.1 2	1125 0.5 2	Report No.	id Results to: Peter	nquished by:	aniphod hur

Page _2_ of _3_

Form COC Rev0/November 2006

Project	Name:	Be	llevue	Hill						To:	Enviro	lab Sen	vices			
Project	No:	84	944.01		0	ampler:	R Won	E			12 Asl	hley Stre	set, Chata	VSV boows	V 2068	
Project	Mgr:	Pe	ter Oit	maa	-	W	oh. Pho	ne: 0412	574 518		Attn:	Tania N	otaras			
Email:	-	a c	ter.uit	maa@uc	ouglasPar	thers.co	m.au				Phone	: 02 99	0 6200 Ha	ax: 02 9910 (201	
Date R	sduired:	Sto Sto	andard	tva La	ib Quote I	NO					Email:	tnotara	s@envirc	olabservices.	com.au	
				Sample Type						Analy	tes					
ample	Sample Depth (m)	Lab ID	e Builqn	soil - water	itainer ;	oqu	EC								2	otes
7-291	. ++		ns2 Tat	- M - S	type Cor	Cor 8a	,Hq									
H126	2.0	52	12/4	S	Jar/bag	×	×									
H127	0.5	50	11/4	S	Jar/bag	×	×									
H128	1.0	ンナ	12/4	S	Jar/bag	×	×									
H129	0.5	28	10/4	S	Jar/bag	×	×						100 M			
H129	2.0	A	10/4	S	Jar/bag	×	×									
H130	0.1	30	10/4	S	Jar/bag	×	×									
4						a					50		-			
ind Bool	the to: D	C soft	Secont	Doualoc	Dottoore				De Londo		I Moot D	1110 OF		Frone: (UZ)	9809 0000 400E	
linquishe	d by:		Si	gned:		colliau	Date	& Time:	30 11011	Re Roal	ceived By:	Ane zi la	5	Date &	Time: 19/01	1200
linguiche	d hur		Sio	.hou			Dato 8	Time.			Dur	5		Date 8. 1)))-

Form COC Rev0/November 2006

с. | Page_3__ of

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

130980

Client: Douglas Partners Pty Ltd 96 Hermitage Rd West Ryde NSW 2114

Attention: Peter Oitmaa

Sample log in details:

Your Reference:84944.00, Bellevue HillNo. of samples:10 SoilsDate samples received / completed instructions received10/07/2015/10/07/2015

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 17/07/15
 / 17/07/15

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Jacinta/Hurst Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	130980-1	130980-2	130980-3	130980-4	130980-5
Your Reference		BH2	BH2	BH2	BH2	BH4
Depth		1.0	2.0	3.0	4.0	1.0
Date Sampled		7/07/2015	7/07/2015	7/07/2015	7/07/2015	3/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	110	111	112	111	117

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	130980-6	130980-7	130980-8	130980-9	130980-10
Your Reference		BH4	BH4	BH4	BH10	BH10
Depth		2.0	3.0	4.0	1.0	2.0
Date Sampled		3/07/2015	3/07/2015	3/07/2015	6/07/2015	6/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	110	121	106	117	120

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	130980-1	130980-2	130980-3	130980-4	130980-5
Your Reference		BH2	BH2	BH2	BH2	BH4
Depth		1.0	2.0	3.0	4.0	1.0
Date Sampled		7/07/2015	7/07/2015	7/07/2015	7/07/2015	3/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	14/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	81	72	79	76	117

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	130980-6	130980-7	130980-8	130980-9	130980-10
Your Reference		BH4	BH4	BH4	BH10	BH10
Depth		2.0	3.0	4.0	1.0	2.0
Date Sampled		3/07/2015	3/07/2015	3/07/2015	6/07/2015	6/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	80	76	78	82	78

PAHs in Soil						
Our Reference:	UNITS	130980-1	130980-2	130980-3	130980-4	130980-5
Your Reference		BH2	BH2	BH2	BH2	BH4
Depth		1.0	2.0	3.0	4.0	1.0
Date Sampled		7/07/2015	7/07/2015	7/07/2015	7/07/2015	3/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	14/07/2015
Date analysed	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	14/07/2015
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	1.4
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.9
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.9
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	0.5
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	0.3
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	0.5
Total Positive PAHs	mg/kg	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE	5.8
Surrogate p-Terphenyl-d14	%	95	84	101	96	95

PAHs in Soil						
Our Reference:	UNITS	130980-6	130980-7	130980-8	130980-9	130980-10
Your Reference		BH4	BH4	BH4	BH10	BH10
Depth		2.0	3.0	4.0	1.0	2.0
DateSampled		3/07/2015	3/07/2015	3/07/2015	6/07/2015	6/07/2015
		SOI	SOI	SOI	SOI	Soli
Date extracted	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	0.7	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	0.5	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	6.5	0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	1.8	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	5.0	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	4.7	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	2.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	1.8	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	2.4	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	1.6	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	0.9	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	0.7	<0.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	2.3	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	2.3	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	2.3	<0.5
Total Positive PAHs	mg/kg	NIL(+)VE	NIL(+)VE	NIL(+)VE	29	0.10
Surrogate p-Terphenyl-d14	%	95	95	104	105	96

Organochlorine Pesticides in soil						
Our Reference:	UNITS	130980-1	130980-2	130980-3	130980-4	130980-5
Your Reference		BH2	BH2	BH2	BH2	BH4
Depth		1.0	2.0	3.0	4.0	1.0
Date Sampled		7/07/2015	7/07/2015	7/07/2015	7/07/2015	3/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	89	79	88	83	87

Organochlorine Pesticides in soil						
Our Reference:	UNITS	130980-6	130980-7	130980-8	130980-9	130980-10
Your Reference		BH4	BH4	BH4	BH10	BH10
Depth		2.0	3.0	4.0	1.0	2.0
Date Sampled		3/07/2015	3/07/2015	3/07/2015	6/07/2015	6/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	79	86	85	83	84

	-					
Organophosphorus Pesticides Our Reference: Your Reference Depth Date Sampled Type of sample	UNITS 	130980-1 BH2 1.0 7/07/2015 Soil	130980-2 BH2 2.0 7/07/2015 Soil	130980-3 BH2 3.0 7/07/2015 Soil	130980-4 BH2 4.0 7/07/2015 Soil	130980-5 BH4 1.0 3/07/2015 Soil
Date extracted		13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
	_	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
	- ma/ka	-0.1	-0.1	-0.1	-0.1	<0.1
Promonbos othyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrinhos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chiorpynphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dictitorios	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Etnion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	89	79	88	83	87
Organophosphorus Pesticides						
Our Reference:	UNITS	130980-6	130980-7	130980-8	130980-9	130980-10
Your Reference		BH4	BH4	BH4	BH10	BH10
Depth		2.0	3.0	4.0	1.0	2.0
Date Sampled		3/07/2015	3/07/2015	3/07/2015	6/07/2015	6/07/2015
l ype of sample		Soli	Soli	Soli	Soli	501
Date extracted	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
	00	-				

PCBs in Soil						
Our Reference:	UNITS	130980-1	130980-2	130980-3	130980-4	130980-5
Your Reference		BH2	BH2	BH2	BH2	BH4
Depth		1.0	2.0	3.0	4.0	1.0
Date Sampled		7/07/2015	7/07/2015	7/07/2015	7/07/2015	3/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	89	79	88	83	87
PCBs in Soil						
Our Reference:	UNITS	130980-6	130980-7	130980-8	130980-9	130980-10
Your Reference		BH4	BH4	BH4	BH10	BH10
Depth		2.0	3.0	4.0	1.0	2.0
Date Sampled		3/07/2015	3/07/2015	3/07/2015	6/07/2015	6/07/2015
		501	501	501	501	5011
Date extracted	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	79	86	85	83	84
Acid Extractable metals in soil Our Reference: Your Reference	UNITS	130980-1 вн2	130980-2 вн2	130980-3 вн2	130980-4 вн2	130980-5 вн4
---	---------	--------------------	-----------------	------------------	-----------------	-----------------
Dopth		1.0	2.0	2.0	4.0	1.0
Deptil		7/07/2015	2.0	3.0 7/07/2015	4.0	1.0
Type of sample		Soil	Soil	Soil	Soil	Soil
		13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	_	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Arsenic	ma/ka	41	<4	<4	<4	<4
Cadmium	ma/ka	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	ma/ka	3	2	1	2	2
Copper	ma/ka	5	1	<1	<1	2
Lead	ma/ka	3	3	1	1	5
Mercury	ma/ka	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	ma/ka	<1	<1	<1	<1	<1
Zinc	mg/kg	36	3	1	<1	3
Line	iiig/kg	50	3	I		5
Acid Extractable metals in soil						
Our Reference:	UNITS	130980-6	130980-7	130980-8	130980-9	130980-10
Your Reference		BH4	BH4	BH4	BH10	BH10
Depth		2.0	3.0	4.0	1.0	2.0
Date Sampled		3/07/2015	3/07/2015	3/07/2015	6/07/2015	6/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	1	1	2	2	2
Copper	mg/kg	1	<1	1	22	<1
Lead	mg/kg	9	4	14	10	2
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	<1	1	1
Zinc	mg/kg	3	2	4	10	1
			-			
Acid Extractable metals in soil						
Our Reference:	UNITS	130980-11				
Your Reference		BH2 -				
		TRIPLICATE				
		1.0				
Type of sample		07/07/2015 Soil				
			1			
Date digested	-	13/07/2015				
Date analysed	-	13/07/2015				
Arsenic	mg/kg	20				

Cadmium

Chromium

Copper

Lead

Mercury

Nickel

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

<0.4

2

4

5

<0.1

1

Acid Extractable metals in soil		
Our Reference:	UNITS	130980-11
Your Reference		BH2 - TRIPLICATE
Depth		1.0
Date Sampled Type of sample		07/07/2015 Soil
Zinc	mg/kg	25

Misc Soil - Inorg Our Reference: Your Reference Depth Date Sampled Type of sample	UNITS 	130980-1 BH2 1.0 7/07/2015 Soil	130980-2 BH2 2.0 7/07/2015 Soil	130980-3 BH2 3.0 7/07/2015 Soil	130980-4 BH2 4.0 7/07/2015 Soil	130980-5 BH4 1.0 3/07/2015 Soil
Date prepared	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference:	UNITS	130980-6	130980-7	130980-8	130980-9	130980-10
Your Reference		BH4	BH4	BH4	BH10	BH10
Depth		2.0	3.0	4.0	1.0	2.0
Date Sampled		3/07/2015	3/07/2015	3/07/2015	6/07/2015	6/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Misc Inorg - Soil						
Our Reference:	UNITS	130980-1	130980-2	130980-3	130980-4	130980-5
Your Reference		BH2	BH2	BH2	BH2	BH4
Depth		1.0	2.0	3.0	4.0	1.0
Date Sampled		7/07/2015	7/07/2015	7/07/2015	7/07/2015	3/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
pH 1:5 soil:water	pH Units	6.3	6.5	6.5	5.8	6.3
Electrical Conductivity 1:5 soil:water	μS/cm	21	13	13	14	14
Chloride, Cl 1:5 soil:water	mg/kg	<10	<10	<10	<10	<10
Sulphate, SO4 1:5 soil:water	mg/kg	<10	<10	<10	<10	<10
			1			
Misc Inorg - Soil						
Our Reference:	UNITS	130980-6	130980-7	130980-8	130980-9	130980-10
Your Reference		BH4	BH4	BH4	BH10	BH10
Depth		2.0	3.0	4.0	1.0	2.0
DateSampled		3/07/2015	3/07/2015	3/07/2015	6/07/2015	6/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
pH 1:5 soil:water	pH Units	6.1	6.0	6.2	9.9	7.2
Electrical Conductivity 1:5 soil:water	µS/cm	12	11	14	87	36
Chloride, Cl 1:5 soil:water	mg/kg	<10	<10	<10	<10	<10
Sulphate, SO4 1:5 soil:water	mg/kg	<10	<10	<10	38	31

Moisture Our Reference: Your Reference Depth Date Sampled Type of sample	UNITS 	130980-1 BH2 1.0 7/07/2015 Soil	130980-2 BH2 2.0 7/07/2015 Soil	130980-3 BH2 3.0 7/07/2015 Soil	130980-4 BH2 4.0 7/07/2015 Soil	130980-5 BH4 1.0 3/07/2015 Soil
Date prepared	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
Moisture	%	7.7	4.0	4.6	5.5	4.4
Moisture						
Our Reference:	UNITS	130980-6	130980-7	130980-8	130980-9	130980-10
Your Reference		BH4	BH4	BH4	BH10	BH10
Depth		2.0	3.0	4.0	1.0	2.0
Date Sampled		3/07/2015	3/07/2015	3/07/2015	6/07/2015	6/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	13/07/2015	13/07/2015	13/07/2015	13/07/2015	13/07/2015
Date analysed	-	14/07/2015	14/07/2015	14/07/2015	14/07/2015	14/07/2015
Moisture	%	7.4	6.3	20	1.5	1.9

Ashestos ID soils						
Asuesius ID - Sulls Our Reference:		130080-1	130080-2	130080-3	130080-4	130080-5
		BH2	BH2	BH2	BH2	130300-3 ВНИ
Denth		1.0	2.0	3.0	4.0	10
Date Sampled		7/07/2015	2.0	7/07/2015	7/07/2015	3/07/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	16/07/2015	16/07/2015	16/07/2015	16/07/2015	16/07/2015
Sample mass tested	g	Approx 60g	Approx 70g	Approx 70g	Approx 75g	Approx 65g
Sample Description	-	Brown coarse- grained sandy soil	Brown coarse- grained sandy soil	Brown coarse- grained sandy soil	Brown coarse- grained sandy soil	Brown coarse- grained sandy soil
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
						Г
Aspesios ID - Solis						
		130080-6	130080-7	130080-8	130080-0	
Your Reference		130980-6 вни	130980-7 вни	130980-8 вни	130980-9 BH10	
Your Reference		130980-6 BH4 2.0	130980-7 BH4 3.0	130980-8 BH4 4 0	130980-9 BH10 1.0	
Your Reference Depth		130980-6 BH4 2.0 3/07/2015	130980-7 BH4 3.0 3/07/2015	130980-8 BH4 4.0 3/07/2015	130980-9 BH10 1.0 6/07/2015	
Your Reference Depth Date Sampled Type of sample		130980-6 BH4 2.0 3/07/2015 Soil	130980-7 BH4 3.0 3/07/2015 Soil	130980-8 BH4 4.0 3/07/2015 Soil	130980-9 BH10 1.0 6/07/2015 Soil	
Your Reference Depth Date Sampled Type of sample		130980-6 BH4 2.0 3/07/2015 Soil	130980-7 BH4 3.0 3/07/2015 Soil	130980-8 BH4 4.0 3/07/2015 Soil	130980-9 BH10 1.0 6/07/2015 Soil 16/07/2015	-
Your Reference Depth Date Sampled Type of sample Date analysed Sample mass tested		130980-6 BH4 2.0 3/07/2015 Soil 16/07/2015 Approx 75g	130980-7 BH4 3.0 3/07/2015 Soil 16/07/2015 Approx 75g	130980-8 BH4 4.0 3/07/2015 Soil 16/07/2015 Approx 60g	130980-9 BH10 1.0 6/07/2015 Soil 16/07/2015 Approx 40g	
Your Reference Depth Date Sampled Type of sample Date analysed Sample mass tested Sample Description	 g	130980-6 BH4 2.0 3/07/2015 Soil 16/07/2015 Approx 75g Brown	130980-7 BH4 3.0 3/07/2015 Soil 16/07/2015 Approx 75g Brown	130980-8 BH4 4.0 3/07/2015 Soil 16/07/2015 Approx 60g	130980-9 BH10 1.0 6/07/2015 Soil 16/07/2015 Approx 40g Brown	
Your Reference Depth Date Sampled Type of sample Date analysed Sample mass tested Sample Description	 g -	130980-6 BH4 2.0 3/07/2015 Soil 16/07/2015 Approx 75g Brown coarse- grained sandy soil	130980-7 BH4 3.0 3/07/2015 Soil 16/07/2015 Approx 75g Brown coarse- grained sandy soil	130980-8 BH4 4.0 3/07/2015 Soil 16/07/2015 Approx 60g Grey coarse- grained sandy soil	130980-9 BH10 1.0 6/07/2015 Soil 16/07/2015 Approx 40g Brown coarse- grained sandy soil	
Your Reference Depth Date Sampled Type of sample Date analysed Sample mass tested Sample Description Asbestos ID in soil	 g 	130980-6 BH4 2.0 3/07/2015 Soil 16/07/2015 Approx 75g Brown coarse- grained sandy soil No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	130980-7 BH4 3.0 3/07/2015 Soil 16/07/2015 Approx 75g Brown coarse- grained sandy soil No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	130980-8 BH4 4.0 3/07/2015 Soil 16/07/2015 Approx 60g Grey coarse- grained sandy soil No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	130980-9 BH10 1.0 6/07/2015 Soil 16/07/2015 Approx 40g Brown coarse- grained sandy soil No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
	For soil results:- 1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql actually="" are="" at="" is="" pql.="" the="" the<br="" this="">most conservative approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present.</pql>
	 2. 'TEQ zero' values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" li="" more="" negative="" pahs="" pql.<="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.=""> 3. 'TEQ half PQI ' values are assuming all contributing PAHs reported as <pql are="" half="" li="" pqi.<="" stipulated="" the=""> </pql></pql>
	Hence a mid-point between the most and least conservative approaches above. Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PAHs" is simply a sum of the positive individual PAHs.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.

	Client Reference: 84944.00, Bellevue Hill								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
vTRH(C6-C10)/BTEXN in Soil						Base II Duplicate II % RPD			
Date extracted	-			13/07/2 015	130980-1	13/07/2015 13/07/2015	LCS-3	13/07/2015	
Date analysed	-			14/07/2 015	130980-1	14/07/2015 14/07/2015	LCS-3	14/07/2015	
TRHC6 - C9	mg/kg	25	Org-016	<25	130980-1	<25 <25	LCS-3	124%	
TRHC6 - C10	mg/kg	25	Org-016	<25	130980-1	<25 <25	LCS-3	124%	
Benzene	mg/kg	0.2	Org-016	<0.2	130980-1	<0.2 <0.2	LCS-3	125%	
Toluene	mg/kg	0.5	Org-016	<0.5	130980-1	<0.5 <0.5	LCS-3	122%	
Ethylbenzene	mg/kg	1	Org-016	<1	130980-1	<1 <1	LCS-3	122%	
m+p-xylene	mg/kg	2	Org-016	<2	130980-1	<2 <2	LCS-3	125%	
o-Xylene	mg/kg	1	Org-016	<1	130980-1	<1 <1	LCS-3	120%	
naphthalene	mg/kg	1	Org-014	<1	130980-1	<1 <1	[NR]	[NR]	
<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-016	119	130980-1	110 115 RPD:4	LCS-3	117%	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %	
					Sm#	Raaa II Duplicata II 9/ DDD		Recovery	
SVTRH(CT0-C40)INSOI					-	Base II Duplicate II %RPD			
Date extracted	-			13/07/2 015	130980-1	13/07/2015 13/07/2015	LCS-3	13/07/2015	
Date analysed	-			14/07/2 015	130980-1	14/07/2015 14/07/2015	LCS-3	14/07/2015	
TRHC 10 - C 14	mg/kg	50	Org-003	<50	130980-1	<50 <50	LCS-3	90%	
TRHC 15 - C28	mg/kg	100	Org-003	<100	130980-1	<100 <100	LCS-3	95%	
TRHC29 - C36	mg/kg	100	Org-003	<100	130980-1	<100 210	LCS-3	77%	
TRH>C10-C16	mg/kg	50	Org-003	<50	130980-1	<50 <50	LCS-3	90%	
TRH>C16-C34	mg/kg	100	Org-003	<100	130980-1	<100 160	LCS-3	95%	
TRH>C34-C40	mg/kg	100	Org-003	<100	130980-1	<100 210	LCS-3	77%	
Surrogate o-Terphenyl	%		Org-003	82	130980-1	81 87 RPD:7	LCS-3	89%	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery	
PAHs in Soil						Base II Duplicate II % RPD			
Date extracted	-			13/07/2 015	130980-1	13/07/2015 13/07/2015	LCS-3	13/07/2015	
Date analysed	-			13/07/2 015	130980-1	13/07/2015 13/07/2015	LCS-3	13/07/2015	
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	130980-1	<0.1 <0.1	LCS-3	113%	
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]	
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]	
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	130980-1	<0.1 <0.1	LCS-3	95%	
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	130980-1	<0.1 <0.1	LCS-3	105%	
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]	
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	130980-1	<0.1 <0.1	LCS-3	98%	

Client Reference: 84944.00, Bellevue Hill								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		2
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	130980-1	<0.1 <0.1	LCS-3	103%
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	130980-1	<0.1 <0.1	LCS-3	97%
Benzo(b,j+k) fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	130980-1	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	130980-1	<0.05 <0.05	LCS-3	105%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
<i>Surrogate p</i> -Terphenyl- d14	%		Org-012 subset	101	130980-1	95 125 RPD:27	LCS-3	104%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
Organochlorine Pesticides in soil					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-			13/07/2	130980-1	13/07/2015 13/07/2015	LCS-3	13/07/2015
Date analysed	-			015 14/07/2 015	130980-1	14/07/2015 14/07/2015	LCS-3	14/07/2015
НСВ	mg/kg	0.1	Org-005	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	130980-1	<0.1 <0.1	LCS-3	88%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	130980-1	<0.1 <0.1	LCS-3	85%
Heptachlor	mg/kg	0.1	Org-005	<0.1	130980-1	<0.1 <0.1	LCS-3	88%
delta-BHC	mg/kg	0.1	Org-005	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	130980-1	<0.1 <0.1	LCS-3	96%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	130980-1	<0.1 <0.1	LCS-3	86%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	130980-1	<0.1 <0.1	LCS-3	87%
Dieldrin	mg/kg	0.1	Org-005	<0.1	130980-1	<0.1 <0.1	LCS-3	89%
Endrin	mg/kg	0.1	Org-005	<0.1	130980-1	<0.1 <0.1	LCS-3	97%
pp-DDD	mg/kg	0.1	Org-005	<0.1	130980-1	<0.1 <0.1	LCS-3	94%
Endosulfan II	mg/kg	0.1	Org-005	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	130980-1	<0.1 <0.1	LCS-3	86%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%		Org-005	87	130980-1	89 96 RPD:8	LCS-3	82%

84944.00, Bellevue Hill

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides						Base II Duplicate II % RPD		
Date extracted	-			13/07/2 015	130980-1	13/07/2015 13/07/2015	LCS-3	13/07/2015
Date analysed	-			14/07/2 015	130980-1	14/07/2015 14/07/2015	LCS-3	14/07/2015
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	130980-1	<0.1 <0.1	LCS-3	99%
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	130980-1	<0.1 <0.1	LCS-3	103%
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
Diazinon	mg/kg	0.1	Org-008	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
Dichlorvos	mg/kg	0.1	Org-008	<0.1	130980-1	<0.1 <0.1	LCS-3	104%
Dimethoate	mg/kg	0.1	Org-008	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	0.1	Org-008	<0.1	130980-1	<0.1 <0.1	LCS-3	123%
Fenitrothion	mg/kg	0.1	Org-008	<0.1	130980-1	<0.1 <0.1	LCS-3	101%
Malathion	mg/kg	0.1	Org-008	<0.1	130980-1	<0.1 <0.1	LCS-3	78%
Parathion	mg/kg	0.1	Org-008	<0.1	130980-1	<0.1 <0.1	LCS-3	108%
Ronnel	mg/kg	0.1	Org-008	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%		Org-008	87	130980-1	89 96 RPD:8	LCS-3	84%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II % RPD		
Date extracted	-			13/07/2 015	130980-1	13/07/2015 13/07/2015	LCS-3	13/07/2015
Date analysed	-			14/07/2 015	130980-1	14/07/2015 14/07/2015	LCS-3	14/07/2015
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	130980-1	<0.1 <0.1	LCS-3	122%
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	130980-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		Org-006	87	130980-1	89 96 RPD:8	LCS-3	83%

Client Reference: 84944.00, Bellevue Hill								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II % RPD		
Date digested	-			13/07/2 015	130980-1	13/07/2015 13/07/2015	LCS-8	13/07/2015
Date analysed	-			13/07/2 015	130980-1	13/07/2015 13/07/2015	LCS-8	13/07/2015
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	130980-1	41 14 RPD: 98	LCS-8	106%
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	130980-1	<0.4 <0.4	LCS-8	94%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	130980-1	3 2 RPD:40	LCS-8	103%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	130980-1	5 5 RPD:0	LCS-8	104%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	130980-1	3 7 RPD:80	LCS-8	98%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	130980-1	<0.1 <0.1	LCS-8	90%
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	130980-1	<1 1	LCS-8	100%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	130980-1	36 21 RPD: 53	LCS-8	102%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Misc Soil - Inorg						Base II Duplicate II % RPD		
Date prepared	-			13/07/2 015	130980-1	13/07/2015 13/07/2015	LCS-1	13/07/2015
Date analysed	-			13/07/2 015	130980-1	13/07/2015 13/07/2015	LCS-1	13/07/2015
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	130980-1	<5 <5	LCS-1	109%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Misc Inorg - Soil						Base II Duplicate II % RPD		
Date prepared	-			14/07/2 015	130980-1	14/07/2015 14/07/2015	LCS-1	14/07/2015
Date analysed	-			14/07/2 015	130980-1	14/07/2015 14/07/2015	LCS-1	14/07/2015
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	130980-1	6.3 6.4 RPD:2	LCS-1	102%
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	130980-1	21 23 RPD:9	LCS-1	100%
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	130980-1	<10 <10	LCS-1	95%
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	130980-1	<10 <10	LCS-1	98%

		Client Referenc	e: 84944.00, Bellevue	e Hill	
QUALITYCONTROL vTRH(C6-C10)/BTEXN in	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Soil					
Date extracted	-	[NT]	[NT]	130980-2	13/07/2015
Date analysed	-	[NT]	[NT]	130980-2	14/07/2015
TRHC6 - C9	mg/kg	[NT]	[NT]	130980-2	118%
TRHC6 - C10	mg/kg	[NT]	[NT]	130980-2	118%
Benzene	mg/kg	[NT]	[NT]	130980-2	118%
Toluene	mg/kg	[NT]	[NT]	130980-2	116%
Ethylbenzene	mg/kg	[NT]	[NT]	130980-2	116%
m+p-xylene	mg/kg	[NT]	[NT]	130980-2	120%
o-Xylene	mg/kg	[NT]	[NT]	130980-2	114%
naphthalene	mg/kg	[NT]	[NT]	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%	[NT]	[NT]	130980-2	115%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil			Base + Duplicate + %RPD		
Date extracted	-	130980-5	14/07/2015 13/07/2015	130980-2	13/07/2015
Date analysed	-	130980-5	14/07/2015 14/07/2015	130980-2	14/07/2015
TRHC 10 - C 14	mg/kg	130980-5	<50 <50	130980-2	95%
TRHC 15 - C28	mg/kg	130980-5	<100 810	130980-2	98%
TRHC29 - C36	mg/kg	130980-5	<100 310	130980-2	68%
TRH>C10-C16	mg/kg	130980-5	<50 50	130980-2	95%
TRH>C16-C34	mg/kg	130980-5	<100 1000	130980-2	98%
TRH>C34-C40	mg/kg	130980-5	<100 140	130980-2	68%
Surrogate o-Terphenyl	%	130980-5	117 105 RPD:11	130980-2	99%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		
Date extracted	-	130980-5	14/07/2015 13/07/2015	130980-2	13/07/2015
Date analysed	-	130980-5	14/07/2015 13/07/2015	130980-2	13/07/2015
Naphthalene	mg/kg	130980-5	0.2 0.4 RPD:67	130980-2	104%
Acenaphthylene	mg/kg	130980-5	<0.1 0.3	[NR]	[NR]
Acenaphthene	mg/kg	130980-5	0.1 5.6 RPD: 193	[NR]	[NR]
Fluorene	mg/kg	130980-5	<0.1 3.7	130980-2	90%
Phenanthrene	mg/kg	130980-5	1.4 52 RPD: 190	130980-2	96%
Anthracene	mg/kg	130980-5	0.3 14 RPD: 192	[NR]	[NR]
Fluoranthene	mg/kg	130980-5	0.9 44 RPD: 192	130980-2	94%
Pyrene	mg/kg	130980-5	0.9 42 RPD: 192	130980-2	99%
Benzo(a)anthracene	mg/kg	130980-5	0.4 18 RPD:191	[NR]	[NR]
Chrysene	mg/kg	130980-5	0.4 14 RPD: 189	130980-2	88%
Benzo(b,j+k)fluoranthene	mg/kg	130980-5	0.5 15 RPD: 187	[NR]	[NR]
Benzo(a)pyrene	mg/kg	130980-5	0.3 14 RPD: 192	130980-2	87%
Indeno(1,2,3-c,d)pyrene	mg/kg	130980-5	0.2 6.2 RPD: 188	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	130980-5	<0.1 1.2	[NR]	[NR]

lient Reference	e:
-----------------	----

		Client Referenc	e: 84944.00, Bellevue	e Hill	
QUALITY CONTROL PAHs in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Benzo(g,h,i)perylene	mg/kg	130980-5	0.2 4.6 RPD:183	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	130980-5	95 104 RPD:9	130980-2	101%
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	130980-2	13/07/2015
Date analysed	-	[NT]	[NT]	130980-2	14/07/2015
НСВ	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-BHC	mg/kg	[NT]	[NT]	130980-2	90%
gamma-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
beta-BHC	mg/kg	[NT]	[NT]	130980-2	87%
Heptachlor	mg/kg	[NT]	[NT]	130980-2	98%
delta-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
Aldrin	mg/kg	[NT]	[NT]	130980-2	88%
Heptachlor Epoxide	mg/kg	[NT]	[NT]	130980-2	90%
gamma-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan I	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDE	mg/kg	[NT]	[NT]	130980-2	88%
Dieldrin	mg/kg	[NT]	[NT]	130980-2	98%
Endrin	mg/kg	[NT]	[NT]	130980-2	98%
pp-DDD	mg/kg	[NT]	[NT]	130980-2	95%
Endosulfan II	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDT	mg/kg	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	[NT]	[NT]	130980-2	86%
Methoxychlor	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%	[NT]	[NT]	130980-2	88%

		Client Reference	e: 84944.00, Bellevue	e Hill	
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Organophosphorus			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	130980-2	13/07/2015
Date analysed	-	[NT]	[NT]	130980-2	14/07/2015
Azinphos-methyl (Guthion)	mg/kg	[NT]	[NT]	130980-2	91%
Bromophos-ethyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Chlorpyriphos	mg/kg	[NT]	[NT]	130980-2	106%
Chlorpyriphos-methyl	mg/kg	[NT]	[NT]	[NR]	[NR]
Diazinon	mg/kg	[NT]	[NT]	[NR]	[NR]
Dichlorvos	mg/kg	[NT]	[NT]	130980-2	123%
Dimethoate	mg/kg	[NT]	[NT]	[NR]	[NR]
Ethion	mg/kg	[NT]	[NT]	130980-2	120%
Fenitrothion	mg/kg	[NT]	[NT]	130980-2	100%
Malathion	mg/kg	[NT]	[NT]	130980-2	85%
Parathion	mg/kg	[NT]	[NT]	130980-2	100%
Ronnel	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCMX	%	[NT]	[NT]	130980-2	74%
QUALITY CONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PCBs in Soil			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	130980-2	13/07/2015
Date analysed	-	[NT]	[NT]	130980-2	14/07/2015
Aroclor 1016	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1221	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1232	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1242	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1248	mg/kg	[NT]	[NT]	[NR]	[NR]
Aroclor 1254	mg/kg	[NT]	[NT]	130980-2	117%
Aroclor 1260	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%	[NT]	[NT]	130980-2	75%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil			Base + Duplicate + %RPD		
Date digested	-	[NT]	[NT]	130980-2	13/07/2015
Date analysed	-	[NT]	[NT]	130980-2	13/07/2015
Arsenic	mg/kg	[NT]	[NT]	130980-2	101%
Cadmium	mg/kg	[NT]	[NT]	130980-2	103%
Chromium	mg/kg	[NT]	[NT]	130980-2	105%
Copper	mg/kg	[NT]	[NT]	130980-2	110%
Lead	mg/kg	[NT]	[NT]	130980-2	105%
Mercury	mg/kg	[NT]	[NT]	130980-2	91%
Nickel	mg/kg	[NT]	[NT]	130980-2	105%
Zinc	mg/kg	[NT]	[NT]	130980-2	108%

		Client Referenc	e: 84944.00, Bellevue	e Hill	
QUALITY CONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Misc Soil - Inorg			Base + Duplicate + %RPD		
Date prepared	-	[NT]	[NT]	130980-2	13/07/2015
Date analysed	-	[NT]	[NT]	130980-2	13/07/2015
Total Phenolics (as Phenol)	mg/kg	[NT]	[NT]	130980-2	107%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Misc Inorg - Soil			Base + Duplicate + %RPD		
Date prepared	-	[NT]	[NT]	130980-2	14/07/2015
Date analysed	-	[NT]	[NT]	130980-2	14/07/2015
pH 1:5 soil:water	pH Units	[NT]	[NT]	[NR]	[NR]
Electrical Conductivity 1:5 soil:water	µS/cm	[NT]	[NT]	[NR]	[NR]
Chloride, Cl 1:5 soil:water	mg/kg	[NT]	[NT]	130980-2	101%
Sulphate, SO4 1:5 soil:water	mg/kg	[NT]	[NT]	130980-2	103%

Report Comments:

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 130980-1 for As, Pb and Zn. Therefore a triplicate result has been issued as laboratory sample number 130980-11.

Asbestos: Excessive sample volume was provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in its own container as per AS4964-2004.

Note: Samples 130980-1 to 8 were sub-sampled from bags and 130980-9 from jar provided by the client.

sTRH/PAH in soil: The RPD for duplicate results is accepted due to the non homogenous nature of the sample/s.

Asbestos ID was analysed by Approved Identifier:	Paul Ching
Asbestos ID was authorised by Approved Signatory:	Paul Ching

INS: Insufficient sample for this test NA: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Peter Oitmaa

Sample Login Details	
Your Reference	84944.00, Bellevue Hill
Envirolab Reference	130980
Date Sample Received	10/07/2015
Date Instructions Received	10/07/2015
Date Results Expected to be Reported	17/07/2015

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	10 Soils
Turnaround Time Requested	Standard
Temperature on receipt (°C)	4.0
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au

Sample and Testing Details on following page

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

Sample Id	Acid Extractable metals in soil	Asbestos ID - soils	Chloride, Cl 1:5 soil:water	Electrical Conductivity 1:5 soil:water	Organochlorine Pesticides in soil	Organophosphorus Pesticides	PAHs in Soil	PCBs in Soil	pH 1:5 soil:water	Sulphate, SO4 1:5 soil:water	svTRH (C10-C40) in Soil	Total Phenolics (as Phenol)	vTRH(C6-C10)/BTEXN in Soil
BH2-1.0	✓	1	✓	1	1	✓	✓	✓	✓	✓	1	✓	1
BH2-2.0	1	✓	1	1	1	1	1	1	1	1	1	1	✓
BH2-3.0	1	1	1	1	\	1	\	\	1	1	>	1	1
BH2-4.0	1	1	1	1	\	1	1	1	1	1	>	1	\checkmark
BH4-1.0	1	1	1	1	>	1	1	1	1	1	>	1	✓
BH4-2.0	<	<	>	<	>	>	>	>	>	>	>	>	✓
BH4-3.0	✓	✓	~	✓	1	✓	1	1	✓	✓	1	~	\checkmark
BH4-4.0	✓	~	~	~	1	~	1	1	~	✓	1	~	1
BH10-1.0	~	~	\	~	1	~	1	1	~	~	1	\	1
DU10 2 0				1	1		1	1	1	1	1	1	1

Form COC Rev0/November 2006

J

CHAIN OF CUSTOD CHAIN OF CUSTOD Project Name B4.9.4.400 Sampler M.P. Ta: Envirolab Services Project No: Peter Ofmaa Mob. Phone: 0412 57.4518 Ta: Envirolab Services Email: Sample Image: Sample Sample Image: Sample Sample Image: Sample Sample Sample Ta: Ta: Envirolab Services Sample Sample Sample Sample Image: Sample Sample Image: Sample Sample Sample Ta: Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample		Date & Tin		ed By:	Receiv		ne:	ate & Tin			Signed:			d by:	Relinquishe
Project Name Bellikurge H1111 To Envirolab Services Project Name St. 9.44.000 Sample Mob. Phone: 0412 574 516 To Envirolab Services Email: Deter Otmaa Mob. Phone: 0412 574 516 Tal. Nahley Street, Chatswood NSW 2067 Attr: Talia Notaras Email: Deter Otmaa Mob. Phone: 0412 574 516 Talia Notaras Phone: 02 9910 6201 Fax: 02 9910 6201 Date Required: St. 7 St. 7 St. 7 To Email: thotaras@envirolabservices.com.au Date Required: St. 7 St. 7 St. 7 St. 7 To Email: thotaras@envirolabservices.com.au Sample Lab Quote No. Tal. Bay Attr: Talia Notaras Enc. 29 910 6201 Fax: 02 9910 6201 St. 7 St. 7 St. 7 St. 7 St. 7 Notes Sample Lab Quote No. Tal. Bay Attr: Talia Notaras@envirolabservices.com.au Notes St. 7 St. 7 St. 7 St. 7 Notes St. 7 Notes St. 7 St. 7 St. 7 St. 7 St. 7 Notes St. 7 St. 7 St. 7 St. 7 St. 7 St. 7 St. 7 Notes St. 7 St. 7 St. 7 St. 7 St. 7	ne: Intalic los	Date & Tin	The	red By:	Receiv	- 1200L	ne: 10/7)ate & Tir		AM	Signed:	AA	UITA	u vy. T.	Veiniquisite
Project Name: Bellikurge: H/1/1 To: Envirolab Services Project Name: Sample: Note: Sample: To: Envirolab Services Project Name: Peter Otmaa Mob. Phone: Orgen To: Envirolab Services Email: Peter Otmaa Mob. Phone: Orgen Ath: Tanla Voltas Phone: C2 9310 6201 Email: Date Fequined: Image: Sample: Image: To: Envirolab Services Sample: Date Fequined: Image: Sample: Image: Ath: Tanla Voltas Date Fequined: Date of the sample: Image: To: Envirolab Services Fac: C2 9310 6201 Sample: Date of the sample: Image: To: Envirolab Services Fac: C2 9310 6201 Sample: Date of the sample: Image: To: Tanla Voltas Fac: C2 9310 6201 Sample: Date of the sample: Image: Tanla Voltas Ath: Sample: Notes Sample: Date of the sample: Sample: Tanla Voltas Fac: C2 910 6201 Notes Sample: Date of the sample: Sample: Tanla Voltas Sample: Notes Sample: Sample: Sa	G	(02) 9809 409	Fax:				de 2114	West Ry	Itage Road,	S: 96 Herm	Audres	r di li lei s			Dolinguicho
Project Name: Belleurae H111 To: Envirolab Services Project Name: 84.9.4.400 Sample: Sample: 12 Ashley Street, Chatswood NSW 2067 Email: peter Ofmaa Mob Phone: 0412 574 518 Analytes Phone: 02 9910 6201 Email: sample Iab To: Envirolab Services Date Required: Stand sample Iab International Services Bample Sample Sample Sample Sample Sample Iab Bample Iab Sample Sample Sample Sample Sample Sample Sample Notes Bample Iab Sample Sample Sample Sample Sample Sample Sample Notes Bample Iab Sample Sample Sample Sample Sample Sample Sample Sample Notes Bample Sample Sample Sample Sample Sample Sample Sample Notes Bample Sample Sample Sample Sample Sample Sample Notes Bample Sample Sample Sample Sample Sample Sample Sample	6	(02) 9809 066	Phone:								····	Dataon		Ite to: Do	Cond Rosi
Project Name: Belleurae: H1/1 To Enviolab Services 12 Ashley Street, Chatswood NSW 2067 Project Ng:: Peter oftmaa Mob Phone: 0412 574 518 To: Enviolab Services 12 Ashley Street, Chatswood NSW 2067 mail: peter oftmaa Mob Phone: 0412 574 518 The Sample Notes Sample Sample Sample Sample Sample Sangle <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>No</td><td></td></t<>											-			No	
Project Name: Bellikure, H/1/L To: Envirolab Services CHAIN OF CUSTOD Project Nar: Service No: Service Services 12 Ashley Street, Chatswood NSW 2067 Arables Email: peter oftmaa @douglaspartnets.com.au. Lab Quote No. To: Envirolab Services 12 Ashley Street, Chatswood NSW 2067 Bample Sample Street oftmaa@douglaspartnets.com.au. Lab Quote No. France Analytes Sample Ibit Sample Sample Sample Sample Sample Notes Beht Ibit Sample Sample Sample Sample Sample Notes Notes Beht Ibit Sample Notes Beht Ibit Sample Sample Sample Sample Sample Sample Notes Sample Sam		Ċ			49 ¹ 1					8					
Bergiet Name: Bellevae H/1/ To: Envirolat Services 12 Ashley Street, Chatswood NSW 2067 Project Ng:: Peter Otmaa Mob. Phone: 0412 574 518 To: Envirolat Services 12 Ashley Street, Chatswood NSW 2067 Email: Peter Otmaa Mob. Phone: 0412 574 518 Envirolat Services 12 Ashley Street, Chatswood NSW 2067 Sample Lab Sample Lab Quote No. Lab Quote No. Analytic Sample Lab Sample Trive Analytic Analytic Sample Lab Sample Sample Analytic Mole: Sample Notes Sample Sample Sample Sample Sample Notes Sample Notes Sample Sample Sample Sample Markards Sample Markards Sample Notes Sample Sample Sample Sample Sample Markards Sample Notes Sample Notes Sample Sample Sample Sample Markards Sample Markards Sample Notes Sagaaa Sample	ecurity: Intact/Broken/None	S													
CHAIN OF CUSTOD CHAIN OF CUSTOD Project Name: $\frac{8 - (1 + 1 - 0.0)}{10}$ Sampler Mar: To: Envirolab Services TO: Envirolab Services Project Ngr: Peter Oftmaar@douglaspartmers com.au Call Services 12 Ashley Street, Chatswood NSW 2067 Bample St.d. St.d. St.d. Cuote No. Eacl Cuote No. Envirolab Services To: Envirolab Services Sample St.d. St.d. St.d. St.d. Sample St.d. Notes Sample Ib St.d. St.d. St.d. St.d. St.d. Sample Notes Sample Ib St.d. St.d. St.d. St.d. St.d. St.d. Sample St.d.	peling: Ice/Icepack 4.0	0			-	-		-	-	Jav	1	-	0	6.0	Jun a
Berlie value Bellieval H111 To: Envirolab Services CHAIN OF CUSTOD Project Ngr: Peter Otimaa Sampler Mol. Phone: 0.412 574 518 To: Envirolab Services 12 Ashley Street, Chatswood NSW 2067 Email: peter Otimaa @douglaspartners.com au Lab Quote No. Envirolab Services 12 Ashley Street, Chatswood NSW 2067 Sample Lab Simple Simple Simple Notes Peter Otimaa @douglaspartners.com au Email: thotaras@envirolabservices.com au Sample Lab Simple Simple Notes Peter Otimaa Notes Sample Jao Jao Jao Jao Jao Jao Notes BH2 Loo Z Jao Jao<	aceived by. O ITT.							_	22	1			5	0.0	-
Project Name: $Bellevne H11 To: Envirolab Services To: Envirolab Services Project No:: Project No:: Peter Olimaa (Bougaspatners.com.au.Stoff, and Ouglaspatners.com.au.Date Required: To: Envirolab Services 12 Ashley Street, Chatswood NSW 2067 Sample Sample Ib Stoff, and Ouglaspatners.com.au.Stoff, and Ouglaspatners.com.au.Date Required: To: Envirolab Services Fax: 02 9910 6200 Sample Ib Stoff, and Ouglaspatners.com.au.Stoff, and ouglaspatners.com.au.Date Soff, and and and an array an array an array an array and an array an array an array$	me Received: 18 - 2				-					-		49	٩	1.0	6H 10
Project Name: $Bellevue H'11$ To: Envirolab Services CHAIN OF CUSTOD Project No: Peter Oltmaa Mob. Phone: 0412 574 518 To: Envirolab Services 12 Ashley Street, Chatswood NSW 2067 Email: peter Oltmaa Mob. Phone: 0412 574 518 Phone: 02 9910 6200 Fax: 02 9910 6200 Fax: 02 9910 6200 Sample Lab Sample Sample Lab Quote No. Analytes Phone: 02 9910 6200 Fax: 02 9910 6200 Sample Lab Sample Sample Sample Sample Analytes Phone: 02 9910 6200 Fax: 02 9910 6200 </td <td>ite Received: 10/7/15</td> <td>Da</td> <td></td> <td>00</td> <td>4.0</td> <td></td>	ite Received: 10/7/15	Da											00	4.0	
Project Name: $Bellevue H'11$ To: Envirolab Services CHAIN OF CUSTOD Project No: Peter Oltmaa Mob. Phone: 0412 574 518 To: Envirolab Services 12 Ashley Street, Chatswood NSW 2067 Email: peter Oltmaa Mob. Phone: 0412 574 518 To: Envirolab Services Phone: 02 9910 6200 Fax: 02 2910 6201 Banple Sample Sample Sample Sample Sample Analytes Phone: 02 9910 6200 Fax: 02 2910 6201 Sample Sample Sample Sample Sample Sample Sample Notes Phone: 02 9910 6200 Fax: 02 9910 6200 Fax: 02 9910 6201 Fax: 02 9910 6201 Fax: 02 9910 6201 Fax: 02 9910 6201 Fax: 02 9910 620 Fax: 02 9910 6201	PNO: (SOJON	10													
Project Name: Belleure H:11 To: Envirolab Services CHAIN OF CUSTOD Project No: 84.9.4.400 Sampler: M.P. To: Envirolab Services 12 Ashley Street, Chatswood NSW 2067 Email: peter oftmaa Mob. Phone: 0412 574 518 peter oftmaa Mob. Phone: 0412 574 518 To: Envirolab Services 12 Ashley Street, Chatswood NSW 2067 Attn: Tania Notaras Poter Ottmaa Mob. Phone: 0412 574 518 To: Envirolab Services Poter Ottmaa Services Poter Ottmaa 2 9910 6200 Fax: 02 9910 6201 Eaton: 02 9910 6200 Fax: 02 9910 6201 Fax: 02 9910 6201 <td>Ph: (02) 9910 62</td> <td></td> <td>J</td> <td>3.0</td> <td></td>	Ph: (02) 9910 62												J	3.0	
Project Name: Be/levue H/1/1 To: Envirolab Services CHAIN OF CUSTOD Project No: Peter Oltmaa Mob. Phone: 0412 574 518 To: Envirolab Services 12 Ashley Street, Chatswood NSW 2067 Attn: Tania Notaras peter oltmaa/Qdouglaspartners.com au To: Envirolab Services 12 Ashley Street, Chatswood NSW 2067 Attn: Tania Notaras Phone: 02 9910 6200 Fax: 02 9910 6200 Fax: 02 9910 6200 Sample ID Image Image Image Image Image ID ID In Image	TROUPS Chatsweed NSW 206	E									-	_	5	2.0	
Project Name: $B_{1/1}(\mu,\mu,e,\mu')$ $M^{1/2}$ To: Envirolab Services Project No: Peter Oitmaa Mob. Phone: $M^{1/2}$ $T^{1/2}$ To: Envirolab Services Email: Date Required: Sample: Mob. Phone: $M^{1/2}$ $T^{1/2}$ To: Envirolab Services Sample Sample Sample Sample Sample Sample Mob. Phone: $M^{1/2}$ $T^{1/2}$ To: Envirolab Services Phone: 2817 2817 2817 2817 2817 2817 2810 22910 201 Sample Sample Sample Sample Sample Sample $T^{1/2}$) Envirolab Service											Els	S	1.0	ън4
Project Name: Bellevue H111 To: Envirolab Services Project No: 84.9.4.4.00 Sampler M.P. To: Envirolab Services Project Mgr: Peter Olmaa Mob. Phone: 0.412 574 518 To: Envirolab Services Email: peter olimaa@douglaspartners.com.au. Lab Quote No. Tabley Street, Chatswood NSW 2067 Date Required: Storm Storm Lab Quote No. Envirolab Services Sample Ib g soil are Fore Depth Ib g soil are Notes BP42 1.0 1 H7 S Tac. Boy 4.0 4 4 4 4 4 4	Ą										+		۱		
Project Name: Project No: Email: Date Required: Bell/lettue H:11 Sample: Date Required: To: Sample: Date Required: Envirolab Services Mob. Phone: 0412 574 518 peter.oitmaa@douglaspartners.com.au Lab Quote No. To: Sample: Lab Quote No. Envirolab Services 12 Ashley Street, Chatswood NSW 2067 Attn: Tania Notaras Phone: 02 9910 6200 Email: motaras@envirolabservices.com.au CHAIN OF CUSTOD Sample D Sample Sample Sample Sample Sample Sample Mob. Phone: 0412 574 518 Street. To: Lab Quote No. Envirolab Services Phone: 02 9910 6200 Email: motaras@envirolabservices.com.au Bepth Inb Sample Sample Sample Sample Sample Sample Sample Sample Sample Notes Bepth Inb Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Notes BH2 1.0 1 14 5 To: Ib Ready Sample Phonel Analytes BH2 1.0 1 14 5 To: Ib Sample Notes BH2 1.0 1 14 14 14 14 14 14			1		1								t	4.0	
Project Name: Bellevale H111 To: Envirolab Services CHAIN OF CUSTOD Project No: 84.91.4400 Sampler: M.C. Sampler: 12 Ashley Street, Chatswood NSW 2067 Email: Peter Olimaa Mob. Phone: 0412 574 518 To: Envirolab Services Date Required: Sample Sample Sample Lab Quote No. Phone: 02 9910 6200 Fax: 02 9910 6201 Sample Sample Sample Sample Trype Attn: Tania Notaras Phone: 02 9910 6200 Fax: 02 9910 6201 Butto II Sample Sample Sample Trype Analytes Notes BH2 1.0 1 74 5 To: East Phone: Phone! Sample Notes BH2 1.0 2 1 Sample Sample Sample Notes Notes Notes											1	~	3	3.0	
Project Name: Bellevale H111 To: Envirolab Services Project No:: 84.94.4.00 Sampler: Me 12 Ashley Street, Chatswood NSW 2067 Project Mgr: Peter Oitmaa Mob. Phone: 0412 574 518 To: Envirolab Services 12 Ashley Street, Chatswood NSW 2067 Email: peter oitmaa@douglaspartners.com.au Sample Type Type True Phone: 02 9910 6200 Fax: 02 9910 6201 Bample Lab Ing Type To: Lab Quote No. Phone: 02 9910 6200 Fax: 02 9910 6201 Bepth Ding Sample Sample Notes Phone: 02 9910 6200 Fax: 02 9910 6201 Bepth Ding Sample Sample Notes Phone: 02 9910 6200 Fax: 02 9910 6201 Bepth Ding Sample Sample Notes Phone: 02 9910 6200 Fax: 02 9910 6201 Bepth Sample Sample Sample Notes Notes Notes BH2 1.0 1 Heavy Bepth Phone Phone Sample BH2 1.0 1 Heavy Math Phone Sample Sample													2	2.0	
Project Name: Bellevue H:// To: Envirolab Services Project No: 84.94.4.00 Sampler: MP 12 Ashley Street, Chatswood NSW 2067 Project Mgr: Peter Oitmaa Mob. Phone: 0412 574 518 To: Envirolab Services 12 Ashley Street, Chatswood NSW 2067 Email: peter. oitmaa@douglaspartners.com.au Sample Lab Quote No. Lab Quote No. Phone: 02 9910 6200 Fax: 02 9910 6200 Fax: 02 9910 6200 Fax: 02 9910 6201 Sample Sample Sample Sample Sample To: Email: thotaras@envirolabservices.com.au Email: thotaras@envirolabservices.com.au Depth ID ng signer Heavy Trul Art Occ Analytes Sample signer Asy and signer Med Med Med Fc Sogriftication		_				_				Jar Bag	S	オイ	-	1.0	BH2
Project Name: Bellevue H'll To: Envirolab Services Project No:		S04-	EC			opr		BIEX	metals	Con type	S- W-	Sar Dat			
Project Name: Bellevue H1/l To: Envirolab Services Project No: 84.944.00 Sampler: M f. To: Envirolab Services Project Mgr: Peter Oitmaa Mob. Phone: 0412 574 518 To: Envirolab Services Email: peter.oitmaa@douglaspartners.com.au Date Required: Sample Lab Quote No. Email: thotaras@envirolabservices.com.au Sample Sample Sample Sample Analytes	Notes	2	a pH	As bet	Phanal	000	PAH	Hat	Heavy	tainer	soil - water	npling e	D	Depth	D
Project Name: Bellevae HVI CHAIN OF CUSTOD Project No: 84.944.00 Sampler: M.P. To: Envirolab Services Project Mgr: Peter Oitmaa Mob. Phone: 0412 574 518 To: Envirolab Services Email: peter oitmaa@douglaspartners.com.au Date Required: St.A. Lab Quote No. To: Envirolab Services Indication Mob. Phone: 0412 574 518 To: Envirolab Services 12 Ashley Street, Chatswood NSW 2067 Attn: Tania Notaras Phone: 02 9910 6200 Fax: 02 9910 6201 Email: thotaras@envirolabservices.com.au					Analytes				-		Sample Type		רע רע	Sample	Sample
Project Name: Bellevue Hill CHAIN OF CUSTOD Project Name: Bellevue Hill To: Envirolab Services Project Ngr: Betroitmaa Mob. Phone: 0412 574 518 To: Envirolab Services Email: peter oitmaa@douglaspartners.com.au Mob. Phone: 0412 574 518 Attn: Tania Notaras Phone: 02 0010 6200	.au	abservices.com	as@envirola	ail: tnotara	Ema				Quote No.	Lab	9 7 8	Sta		equired:	Date R
Project Name: Bellevie Hill CHAIN OF CUSTOD Project No: 84944.00 Sampler: MP Project Mgr: Peter Oitmaa Moh Phone: 0412 574 546 To: Envirolab Services Project Mgr: Peter Oitmaa Moh Phone: 0412 574 546 To: Envirolab Services			lotaras	: I ania N	Attn		1		om.au	aspartners.c	a@dougla	ter.oitma	pe	¢	Email:
Project Name: Bellevue Hill	067	vood NSW 2	vices eet, Chatsw	Ashley Str	o. Env 12 /			л. о	MP	Sampler:		84944	Pe :	No:	Project
CHAIN OF CLISTOD				-	1	4				Hr.I	vue.	Belle	:	Name:	Project
	IN OF CUSTON	CHA										unuwato	ouncut, and	Concentition First	

M Douglas Partners

ENM Order and ENM Exemption

Resource Recovery Order under Part 9, Clause 93 of the Protection of the Environment Operations (Waste) Regulation 2014

The excavated natural material order 2014

Introduction

This order, issued by the Environment Protection Authority (EPA) under clause 93 of the Protection of the Environment Operations (Waste) Regulation 2014 (Waste Regulation), imposes the requirements that must be met by suppliers of excavated natural material to which 'the excavated natural material exemption 2014' applies. The requirements in this order apply in relation to the supply of excavated natural material for application to land as engineering fill or for use in earthworks.

1. Waste to which this order applies

- 1.1. This order applies to excavated natural material. In this order, excavated natural material means naturally occurring rock and soil (including but not limited to materials such as sandstone, shale, clay and soil) that has:
 - a) been excavated from the ground, and
 - b) contains at least 98% (by weight) natural material, and
 - c) does not meet the definition of Virgin Excavated Natural Material in the Act.

Excavated natural material does not include material located in a hotspot; that has been processed; or that contains asbestos, Acid Sulfate Soils (ASS), Potential Acid Sulfate soils (PASS) or sulfidic ores.

2. Persons to whom this order applies

- 2.1. The requirements in this order apply, as relevant, to any person who supplies excavated natural material, that has been generated, processed or recovered by the person.
- 2.2. This order does not apply to the supply of excavated natural material to a consumer for land application at a premises for which the consumer holds a licence under the POEO Act that authorises the carrying out of the scheduled activities on the premises under clause 39 'waste disposal (application to land)' or clause 40 'waste disposal (thermal treatment)' of Schedule 1 of the POEO Act.

3. Duration

3.1. This order commences on 24 November 2014 and is valid until revoked by the EPA by notice published in the Government Gazette.

4. Generator requirements

The EPA imposes the following requirements on any generator who supplies excavated natural material.

Sampling requirements

- 4.1. On or before supplying excavated natural material, the generator must:
 - 4.1.1. Prepare a written sampling plan which includes a description of sample preparation and storage procedures for the excavated natural material.
 - 4.1.2. Undertake sampling and testing of the excavated natural material as required under clauses 4.2, 4.3, and 4.4 below. The sampling must be carried out in accordance with the written sampling plan.
- 4.2. The generator must undertake sampling and analysis of the material for ASS and PASS, in accordance with the NSW Acid Sulfate Soil Manual, Acid Sulfate Soils Management Advisory Council, 1998 and the updated Laboratory Methods Guidelines version 2.1 June 2004 where:
 - 4.2.1. the pH measured in the material is below 5, and/or
 - 4.2.2. the review of the applicable Acid Sulfate Soil Risk Maps (published by the former Department of Land and Water Conservation and available at http://www.environment.nsw.gov.au/acidsulfatesoil/riskmaps.htm) indicates the potential presence of ASS.
- 4.3. For stockpiled material, the generator must:
 - 4.3.1. undertake sampling in accordance with Australian Standard 1141.3.1 2012 Methods for sampling and testing aggregates Sampling Aggregates (or equivalent);
 - 4.3.2. undertake characterisation sampling by collecting the number of samples listed in Column 2 of Table 1 with respect to the quantity of the waste listed in Column 1 of Table 1 and testing each sample for the chemicals and other attributes listed in Column 1 of Table 4. For the purposes of characterisation sampling the generator must collect:
 - 4.3.2.1. composite samples for attributes 1 to 10 and 18 in Column 1 of Table 4.
 - 4.3.2.2. discrete samples for attributes 11 to 17 in Column 1 of Table 4.
 - 4.3.2.3. The generator must carry out sampling in a way that ensures that the samples taken are representative of the material from the entire stockpile. All parts of the stockpile must be equally accessible for sampling.
 - 4.3.2.4. for stockpiles greater than 4,000 tonnes the number of samples described in Table 1 must be repeated.
 - 4.3.3. store the excavated natural material appropriately until the characterisation test results are validated as compliant with the maximum average concentration or other value listed in Column 2 of Table 4 and the absolute maximum concentration or other value listed in Column 3 of Table 4.

Table 1

Sampling of Stockpiled Material				
Column 1	Column 2	Column 3		
Quantity (tonnes)	Number of samples	Validation		
<500	3			
500 - 1,000	4			
1,000 - 2,000	5	Required		
2,000 - 3,000	7			
3,000 - 4,000	10			

4.4. For in situ material, the generator must:

- 4.4.1. undertake sampling by collecting discrete samples. Compositing of samples is not permitted for in-situ materials.
- 4.4.2. undertake characterisation sampling for the range of chemicals and other attributes listed in Column 1 of Table 4 according to the requirements listed in Columns 1, 2 and 3 of Table 2. When the ground surface is not comprised of soil (e.g. concrete slab), samples must be taken at the depth at which the soil commences.
- 4.4.3. undertake sampling at depth according to Column 1 of Table 3.
- 4.4.4. collect additional soil samples (and analyse them for the range of chemicals and other attributes listed in Column 1 of Table 4), at any depth exhibiting discolouration, staining, odour or other indicators of contamination inconsistent with soil samples collected at the depth intervals indicated in Table 3.
- 4.4.5. segregate and exclude hotspots identified in accordance with Table 2, from material excavated for reuse.
- 4.4.6. subdivide sites larger than 50,000 m² into smaller areas and sample each area as per Table 2.
- 4.4.7. store the excavated natural material appropriately until the characterisation test results are validated as compliant with the maximum average concentration or other value listed in Column 2 of Table 4 and the absolute maximum concentration or other value listed in Column 3 of Table 4.

Table 2

In Situ Sampling at surface						
Column 1	Column 2	Column 3	Column 4	Column 5		
Size of <i>in situ</i> area (m ²)	Number of systematic sampling points recommended	Distance between two sampling points (m)	Diameter of the hot spot that can be detected with 95% confidence (m)	Validation		
500	5	10.0	11.8			
1000	6	12.9	15.2			
2000	7	16.9	19.9			
3000	9	18.2	21.5			
4000	11	19.1	22.5			
5000	13	19.6	23.1			
6000	15	20.0	23.6			
7000	17	20.3	23.9			
8000	19	20.5	24.2			
9000	20	21.2	25.0	Required		
10,000	21	21.8	25.7			
15,000	25	25.0	28.9			
20,000	30	25.8	30.5			
25,000	35	26.7	31.5			
30,000	40	27.5	32.4			
35,000	45	27.9	32.9			
40,000	50	28.3	33.4			
45,000	52	29.3	34.6			
50,000	55	30.2	35.6			

Table 2 has been taken from NSW EPA 1995, *Contaminated Sites Sampling Design Guidelines*, NSW Environment Protection Authority.

Table 3

In Situ Sampling at Depth				
Column 1	Column 2			
Sampling Requirements *	Validation			
1 soil sample at 1.0 m bgl from each surface sampling point followed by 1 soil sample for every metre thereafter. From 1.0 m bgl, sample at the next metre	Required if the depth of excavation is equal to or			
interval until the proposed depth of excavation of the material is reached. If the proposed depth of excavation is between 0.5 to 0.9 m after the last metre interval, sample at the base of the proposed depth of excavation.	greater than 1.0 m bgl			

* Refer to Notes for examples

Chemical and other material requirements

- 4.5. The generator must not supply excavated natural material waste to any person if, in relation to any of the chemical and other attributes of the excavated natural material:
 - 4.5.1. The chemical concentration or other attribute of any sample collected and tested as part of the characterisation of the excavated natural material exceeds the absolute maximum concentration or other value listed in Column 3 of Table 4:
 - 4.5.2. The average concentration or other value of that attribute from the characterisation of the excavated natural material (based on the arithmetic mean) exceeds the maximum average concentration or other value listed in Column 2 of Table 4.
- 4.6. The absolute maximum concentration or other value of that attribute in any excavated natural material supplied under this order must not exceed the absolute maximum concentration or other value listed in Column 3 of Table 4.

Column 1	Column 2	Column 3	
Chemicals and other attributes	Maximum average concentration for	Absolute maximum concentration	
	characterisation (mg/kg 'dry weight' unless otherwise specified)	(mg/kg 'dry weight' unless otherwise specified)	
1. Mercury	0.5	1	
2. Cadmium	0.5	1	
3. Lead	50	100	
4. Arsenic	20	40	
5. Chromium (total)	75	150	
6. Copper	100	200	
7. Nickel	30	60	
8. Zinc	150	300	
9. Electrical Conductivity	1.5 dS/m	3 dS/m	
10. pH *	5 to 9	4.5 to 10	
11. Total Polycyclic Aromatic Hydrocarbons (PAHs)	20	40	
12. Benzo(a)pyrene	0.5	1	
13. Benzene	NA	0.5	
14. Toluene	NA	65	
15. Ethyl-benzene	NA	25	
16. Xylene	NA	15	
17. Total Petroleum Hydrocarbons C ₁₀ -C ₃₆	250	500	
18. Rubber, plastic, bitumen, paper, cloth, paint and wood	0.05%	0.10%	

Table 4

* The ranges given for pH are for the minimum and maximum acceptable pH values in the excavated natural material.

Test methods

- 4.7. The generator must ensure that any testing of samples required by this order is undertaken by analytical laboratories accredited by the National Association of Testing Authorities (NATA), or equivalent.
- 4.8. The generator must ensure that the chemicals and other attributes (listed in Column 1 of Table 4) in the excavated natural material it supplies are tested in accordance with the test methods specified below or other equivalent analytical methods. Where an equivalent analytical method is used the detection limit must be equal to or less than that nominated for the given method below.
 - 4.8.1. Test methods for measuring the mercury concentration.
 - 4.8.1.1. Analysis using USEPA SW-846 Method 7471B Mercury in solid or semisolid waste (manual cold vapour technique), or an equivalent analytical method with a detection limit < 20% of the stated absolute maximum concentration in Column 3 of Table 2 (i.e. < 0.20 mg/kg dry weight).</p>
 - 4.8.1.2. Report as mg/kg dry weight.
 - 4.8.2. Test methods for measuring chemicals 2 to 8.
 - 4.8.2.1. Sample preparation by digesting using USEPA SW-846 Method 3051A Microwave assisted acid digestion of sediments, sludges, soils, and oils (or an equivalent analytical method).
 - 4.8.2.2. Analysis using USEPA SW-846 Method 6010C Inductively coupled plasma atomic emission spectrometry, or an equivalent analytical method with a detection limit < 10% of the stated absolute maximum concentration in Column 3 of Table 2, (e.g. 10 mg/kg dry weight for lead).</p>
 - 4.8.2.3. Report as mg/kg dry weight.
 - 4.8.3. Test methods for measuring electrical conductivity and pH.
 - 4.8.3.1. Sample preparation by mixing 1 part excavated natural material with 5 parts distilled water.
 - 4.8.3.2. Analysis using Method 103 (pH) and 104 (Electrical Conductivity) in Schedule B (3): Guideline on Laboratory Analysis of Potentially Contaminated Soils, National Environment Protection (Assessment of Site Contamination) Measure 1999 (or an equivalent analytical method).
 - 4.8.3.3. Report electrical conductivity in deciSiemens per metre (dS/m).
 - 4.8.4. Test method for measuring Polynuclear Aromatic Hydrocarbons (PAHs) and benzo(a)pyrene.
 - 4.8.4.1. Analysis using USEPA SW-846 Method 8100 Polynuclear Aromatic Hydrocarbons (or an equivalent analytical method).
 - 4.8.4.2. Calculate the sum of all 16 PAHs for total PAHs.
 - 4.8.4.3. Report total PAHs as mg/kg dry weight.
 - 4.8.4.4. Report benzo(a)pyrene as mg/kg.

- 4.8.5. Test method for measuring benzene, toluene, ethylbenzene and xylenes (BTEX).
 - 4.8.5.1. Method 501 (Volatile Alkanes and Monocyclic Aromatic Hydrocarbons) in Schedule B (3): Guideline on Laboratory Analysis of Potentially Contaminated Soils, National Environment Protection (Assessment of Site Contamination) Measure 1999 (or an equivalent analytical method).
 - 4.8.5.2. Report BTEX as mg/kg.
- 4.8.6. Test method for measuring Total Petroleum Hydrocarbons (TPH).
 - 4.8.6.1. Method 506 (Petroleum Hydrocarbons) in Schedule B (3): Guideline on Laboratory Analysis of Potentially Contaminated Soils, National Environment Protection (Assessment of Site Contamination) Measure 1999 (or an equivalent analytical method).
 - 4.8.6.2. Report as mg/kg dry weight.
- 4.8.7. Test method for measuring rubber, plastic, bitumen, paper, cloth, paint and wood.
 - 4.8.7.1. NSW Roads & Traffic Authority Test Method T276 Foreign Materials Content of Recycled Crushed Concrete (or an equivalent method).
 - 4.8.7.2. Report as percent.

Notification

- 4.9. On or before each transaction, the generator must provide the following to each person to whom the generator supplies the excavated natural material:
 - a written statement of compliance certifying that all the requirements set out in this order have been met;
 - a copy of the excavated natural material exemption, or a link to the EPA website where the excavated natural material exemption can be found; and
 - a copy of the excavated natural material order, or a link to the EPA website where the excavated natural material order can be found.

Record keeping and reporting

- 4.10. The generator must keep a written record of the following for a period of six years:
 - the sampling plan required to be prepared under clause 4.1.1;
 - all characterisation sampling results in relation to the excavated natural material supplied;
 - the volume of detected hotspot material and the location;
 - the quantity of the excavated natural material supplied; and
 - the name and address of each person to whom the generator supplied the excavated natural material.
- 4.11. The generator must provide, on request, the characterisation and sampling results for that excavated natural material supplied to the consumer of the excavated natural material.

5. Definitions

In this order:

application or apply to land means applying to land by:

- spraying, spreading or depositing on the land; or
- ploughing, injecting or mixing into the land; or
- filling, raising, reclaiming or contouring the land.

Bgl means below ground level, referring to soil at depth beneath the ground surface.

composite sample means a sample that combines five discrete sub-samples of equal size into a single sample for the purpose of analysis.

consumer means a person who applies, or intends to apply excavated natural material to land.

discrete sample means a sample collected and analysed individually that will not be composited.

generator means a person who generates excavated natural material for supply to a consumer.

hotspot means a cylindrical volume which extends through the soil profile from the ground surface to the proposed depth of excavation, where the level of any contaminant listed in Column 1 of Table 2 is greater than the absolute maximum concentration in Column 3 of Table 2.

in situ material means material that exists on or below the ground level. It does not include stockpiled material.

in situ sampling means sampling undertaken on in situ material.

N/A means not applicable.

stockpiled material means material that has been excavated from the ground and temporarily stored on the ground prior to use.

systematic sampling means sampling at points that are selected at even intervals and are statistically unbiased.

transaction means:

- in the case of a one-off supply, the supply of a batch, truckload or stockpile of excavated natural material that is not repeated.
- in the case where the supplier has an arrangement with the recipient for more than one supply of excavated natural material, the first supply of excavated natural material as required under the arrangement.

Manager Waste Strategy and Innovation Environment Protection Authority (by delegation)

Notes

The EPA may amend or revoke this order at any time. It is the responsibility of each of the generator and processor to ensure it complies with all relevant requirements of the most current order. The current version of this order will be available on 'www.epa.nsw.gov.au

In gazetting or otherwise issuing this order, the EPA is not in any way endorsing the supply or use of this substance or guaranteeing that the substance will confer benefit.

The conditions set out in this order are designed to minimise the risk of potential harm to the environment, human health or agriculture, although neither this order nor the accompanying exemption guarantee that the environment, human health or agriculture will not be harmed.

Any person or entity which supplies excavated natural material should assess whether the material is fit for the purpose the material is proposed to be used for, and whether this use may cause harm. The supplier may need to seek expert engineering or technical advice.

Regardless of any exemption or order provided by the EPA, the person who causes or permits the application of the substance to land must ensure that the action is lawful and consistent with any other legislative requirements including, if applicable, any development consent(s) for managing operations on the site(s).

The supply of excavated natural material remains subject to other relevant environmental regulations in the POEO Act and Waste Regulation. For example, a person who pollutes land (s. 142A) or water (s. 120), or causes air pollution through the emission of odours (s. 126), or does not meet the special requirements for asbestos waste (Part 7 of the Waste Regulation), regardless of this order, is guilty of an offence and subject to prosecution.

This order does not alter the requirements of any other relevant legislation that must be met in supplying this material, including for example, the need to prepare a Safety Data Sheet. Failure to comply with the conditions of this order constitutes an offence under clause 93 of the Waste Regulation.

Examples

In situ sampling at depth

Example 1.

If the proposed depth of ENM excavation is between 1 m bgl and 1.4 m bgl, then:

- 1 sample on surface (as per the requirements of Table 2).
- 1 sample at 1 m bgl.
- No further depth sampling after 1 m bgl, unless required under section 4.4.4.

Example 2.

If the proposed depth of ENM excavation is at 1.75 m bgl, then:

- 1 sample on surface (as per the requirements of Table 2).
- 1 sample at 1 m bgl.
- 1 sample at 1.75 m bgl.
- No further depth sampling after 1.75 m bgl, unless required under section 4.4.4.

Example 3.

If the proposed depth of ENM excavation is at 2.25 m bgl, then:

- 1 sample on surface (as per the requirements of Table 2).
- 1 sample at 1 m bgl.
- 1 sample at 2 m bgl.
- No further depth sampling after 2 m bgl, unless required under section 4.4.4.

Resource Recovery Exemption under Part 9, Clauses 91 and 92 of the Protection of the Environment Operations (Waste) Regulation 2014

The excavated natural material exemption 2014

Introduction

This exemption:

- is issued by the Environment Protection Authority (EPA) under clauses 91 and 92 of the Protection of the Environment Operations (Waste) Regulation 2014 (Waste Regulation); and
- exempts a consumer of excavated natural material from certain requirements under the *Protection of the Environment Operations Act 1997* (POEO Act) and the Waste Regulation in relation to the application of that waste to land, provided the consumer complies with the conditions of this exemption.

This exemption should be read in conjunction with 'the excavated natural material order 2014'.

1. Waste to which this exemption applies

- 1.1. This exemption applies to excavated natural material that is, or is intended to be, applied to land as engineering fill or for use in earthworks.
- 1.2. Excavated natural material is naturally occurring rock and soil (including but not limited to materials such as sandstone, shale, clay and soil) that has:
 - a) been excavated from the ground, and
 - b) contains at least 98% (by weight) natural material, and
 - c) does not meet the definition of Virgin Excavated Natural Material in the Act.

Excavated natural material does not include material located in a hotspot; that has been processed; or that contains asbestos, Acid Sulfate Soils (ASS), Potential Acid Sulfate soils (PASS) or sulfidic ores.

2. Persons to whom this exemption applies

2.1. This exemption applies to any person who applies or intends to apply excavated natural material to land as set out in 1.1.

3. Duration

3.1. This exemption commences on 24 November 2014 and is valid until revoked by the EPA by notice published in the Government Gazette.

4. Premises to which this exemption applies

4.1. This exemption applies to the premises at which the consumer's actual or intended application of excavated natural material is carried out.

5. Revocation

5.1. 'The excavated natural material exemption 2012' which commenced 19 October 2012 is revoked from 24 November 2014.

6. Exemption

- 6.1. Subject to the conditions of this exemption, the EPA exempts each consumer from the following provisions of the POEO Act and the Waste Regulation in relation to the consumer's actual or intended application of excavated natural material to land as engineering fill or for use in earthworks at the premises:
 - section 48 of the POEO Act in respect of the scheduled activities described in clauses 39 of Schedule 1 of the POEO Act;
 - Part 4 of the Waste Regulation;
 - section 88 of the POEO Act; and
 - clause 109 and 110 of the Waste Regulation.
- 6.2. The exemption does not apply in circumstances where excavated natural material is received at the premises for which the consumer holds a licence under the POEO Act that authorises the carrying out of the scheduled activities on the premises under clause 39 'waste disposal (application to land) or clause 40 'waste disposal' (thermal treatment) of Schedule 1 of the POEO Act.

7. Conditions of exemption

The exemption is subject to the following conditions:

- 7.1. At the time the excavated natural material is received at the premises, the material must meet all chemical and other material requirements for excavated natural material which are required on or before the supply of excavated natural material under 'the excavated natural material order 2014'.
- 7.2. The excavated natural material can only be applied to land as engineering fill or for use in earthworks.
- 7.3. The consumer must keep a written record of the following for a period of six years:
 - the quantity of any excavated natural material received; and
 - the name and address of the supplier of the excavated natural material received.
- 7.4. The consumer must make any records required to be kept under this exemption available to authorised officers of the EPA on request.
- 7.5. The consumer must ensure that any application of excavated natural material to land must occur within a reasonable period of time after its receipt.

8. Definitions

In this exemption:

application or apply to land means applying to land by:

- spraying, spreading or depositing on the land; or
- ploughing, injecting or mixing into the land; or
- filling, raising, reclaiming or contouring the land.

consumer means a person who applies, or intends to apply excavated natural material to land.

Manager Waste Strategy and Innovation Environment Protection Authority (by delegation)

Notes

The EPA may amend or revoke this exemption at any time. It is the responsibility of the consumer to ensure they comply with all relevant requirements of the most current exemption. The current version of this exemption will be available on www.epa.nsw.gov.au

In gazetting or otherwise issuing this exemption, the EPA is not in any way endorsing the use of this substance or guaranteeing that the substance will confer benefit.

The conditions set out in this exemption are designed to minimise the risk of potential harm to the environment, human health or agriculture, although neither this exemption nor the accompanying order guarantee that the environment, human health or agriculture will not be harmed.

The consumer should assess whether or not the excavated natural material is fit for the purpose the material is proposed to be used for, and whether this use will cause harm. The consumer may need to seek expert engineering or technical advice.

Regardless of any exemption provided by the EPA, the person who causes or permits the application of the substance to land must ensure that the action is lawful and consistent with any other legislative requirements including, if applicable, any development consent(s) for managing operations on the site(s).

The receipt of excavated natural material remains subject to other relevant environmental regulations in the POEO Act and the Waste Regulation. For example, a person who pollutes land (s. 142A) or water (s. 120), or causes air pollution through the emission of odours (s. 126), or does not meet the special requirements for asbestos waste (Part 7 of the Waste Regulation), regardless of having an exemption, is guilty of an offence and subject to prosecution.

This exemption does not alter the requirements of any other relevant legislation that must be met in utilising this material, including for example, the need to prepare a Safety Data Sheet (SDS).

Failure to comply with the conditions of this exemption constitutes an offence under clause 91 of the Waste Regulation.

Notes About this Report

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS 1726, Geotechnical Site Investigations Code. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	20 - 63
Medium gravel	6 - 20
Fine gravel	2.36 - 6
Coarse sand	0.6 - 2.36
Medium sand	0.2 - 0.6
Fine sand	0.075 - 0.2

The proportions of secondary constituents of soils are described as:

Term	Proportion	Example
And	Specify	Clay (60%) and Sand (40%)
Adjective	20 - 35%	Sandy Clay
Slightly	12 - 20%	Slightly Sandy Clay
With some	5 - 12%	Clay with some sand
With a trace of	0 - 5%	Clay with a trace of sand

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	f	25 - 50
Stiff	st	50 - 100
Very stiff	vst	100 - 200
Hard	h	>200

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	SPT N value	CPT qc value (MPa)
Very loose	vl	<4	<2
Loose		4 - 10	2 -5
Medium dense	md	10 - 30	5 - 15
Dense	d	30 - 50	15 - 25
Very dense	vd	>50	>25

Soil Descriptions

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Transported soils formed somewhere else and transported by nature to the site; or
- Filling moved by man.

Transported soils may be further subdivided into:

- Alluvium river deposits
- Lacustrine lake deposits
- Aeolian wind deposits
- Littoral beach deposits
- Estuarine tidal river deposits
- Talus scree or coarse colluvium
- Slopewash or Colluvium transported downslope by gravity assisted by water. Often includes angular rock fragments and boulders.

Rock Descriptions

Rock Strength

Rock strength is defined by the Point Load Strength Index $(Is_{(50)})$ and refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects. The test procedure is described by Australian Standard 4133.4.1 - 1993. The terms used to describe rock strength are as follows:

Term	Abbreviation	Point Load Index Is ₍₅₀₎ MPa	Approx Unconfined Compressive Strength MPa*
Extremely low	EL	<0.03	<0.6
Very low	VL	0.03 - 0.1	0.6 - 2
Low	L	0.1 - 0.3	2 - 6
Medium	М	0.3 - 1.0	6 - 20
High	Н	1 - 3	20 - 60
Very high	VH	3 - 10	60 - 200
Extremely high	EH	>10	>200

* Assumes a ratio of 20:1 for UCS to Is₍₅₀₎

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Extremely weathered	EW	Rock substance has soil properties, i.e. it can be remoulded and classified as a soil but the texture of the original rock is still evident.
Highly weathered	HW	Limonite staining or bleaching affects whole of rock substance and other signs of decomposition are evident. Porosity and strength may be altered as a result of iron leaching or deposition. Colour and strength of original fresh rock is not recognisable
Moderately weathered	MW	Staining and discolouration of rock substance has taken place
Slightly weathered	SW	Rock substance is slightly discoloured but shows little or no change of strength from fresh rock
Fresh stained	Fs	Rock substance unaffected by weathering but staining visible along defects
Fresh	Fr	No signs of decomposition or staining

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with some fragments
Fractured	Core lengths of 40-200 mm with some shorter and longer sections
Slightly Fractured	Core lengths of 200-1000 mm with some shorter and loner sections
Unbroken	Core lengths mostly > 1000 mm

Rock Descriptions

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

where 'sound' rock is assessed to be rock of low strength or better. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core Drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- Auger sample А
- В Bulk sample
- D Disturbed sample Е
- Environmental sample
- U₅₀ Undisturbed tube sample (50mm)
- W Water sample
- pocket penetrometer (kPa) pp
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

21

- vertical ٧
- sub-horizontal sh
- sub-vertical sv

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat

Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

Gravel

Sandy gravel

Cobbles, boulders

Talus

Sedimentary Rocks

Limestone

Metamorphic Rocks

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

...

July 2010

APPENDIX K – GROUND WATER MONITORING

Memorandum

То	Cranbrook School	Mark Flanagan	Via Aconex	
From	Peter Oitmaa		Date	16 July 2018
Subject	Groundwater Monitoring Results Cranbrook School, Bellevue Hill		Project No.	84944.02

This memorandum outlines the results of groundwater monitoring undertaken in three wells on the above site. A data logger was installed in each well and was programed to record data at hourly intervals. The monitoring commenced on 31 January 2018 and the loggers were removed from the wells on 5 July 2018. The results have also been adjusted for atmospheric pressure which has resulted in very small changes to the previous results reported.

A summary of the monitoring undertaken is provided in Table 1.

Details	BH101	BH204	BH205
RL Top of Well	16.1	34.1	27.4
Well Depth	13.7	28.2	23.0
RL Base of Well	2.4	5.9	4.4
Maximum Water Depth	>12.6	22.1	22.7
Minimum Water Depth	>12.6	19.0	19.4
Average Water Depth	>12.6	19.7	19.6
Maximum Water RL	<3.5	15.1	8.0
Minimum Water RL	<3.5	12.0	4.7
Average Water RL	<3.5	14.4	7.9

Table 1: Summary of Groundwater Monitoring 31 Jan 2018 to 5 July 2018

Note: All depths in m. All RLs in m to AHD

Graphs showing the variations in measurements in BH204 and BH205 are attached. The graphs show very little variation over the monitoring period. Well BH101 was dry to 12.6 m depth throughout the monitoring period and the lower 1.1 m appears to have silted up since installation.

Comparison of measured levels with the borehole logs indicate that the groundwater was within the sands at or slightly above the bedrock surface which is expected.

Integrated Practical Solutions

Brisbane • Cairns • Canberra • Central Coast • Coffs Harbour • Darwin • Geelong • Gold Coast • Macarthur Melbourne • Newcastle • Perth • Port Macquarie • Sunshine Coast • Sydney • Townsville • Wollongong

We trust the above information meets your present requirements.

Yours faithfully, Douglas Partners Pty Ltd

Ailus

Peter Oitmaa Principal

Reviewed by AA

Scott Easton Principal

Attachments: Graphs for BH204 and BH205 Notes About this Report

Groundwater Monitoring Results Cranbrook School, Bellevue Hill

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

SYDNEY

LEVEL 3, 4 BROADCAST WAY ARTARMON NSW 2064 PO BOX 1024 CROWS NEST NSW 1585 PHONE: +61 2 9902 4700 FAX: +61 2 9439 1114

NEWCASTLE

LEVEL 1, 118A BELFORD ST BROADMEADOW NSW 2292 PO BOX 835 HAMILTON NSW 2303 PHONE: +61 2 9902 4700 FAX: +61 2 6766 3022

TAMWORTH

SUITE 1, 493 PEEL ST TAMWORTH NSW 2340 PO BOX 576 TAMWORTH NSW 2340 PHONE: +61 2 6766 5225 FAX: +61 2 6766 3022

ACT

UNIT 1, 155 NEWCASTLE ST FYSHWICK ACT 2609 PO BOX 771 FYSHWICK ACT 2609 PHONE: +61 2 6143 2900 FAX: +61 2 6280 8774

richardcrookes.com.au